
VSL: A Data-Centric Internet of Things Overlay
Marc-Oliver Pahl, Stefan Liebald, Christian Lübben

Technical University of Munich
Email: {pahl,liebald,luebben}@s2o.net.in.tum.de

Abstract—Data-centric service-oriented designs are promising
for overcoming the current IoT silos. The Virtual State Layer
(VSL) is a data-centric middleware that securely unifies the access
to distributed heterogeneous IoT components. The VSL solves
key challenge of today’s IoT: reducing the complexity, enabling
interoperability, and providing security-by-design. The described
practical setting enables the interactive exploration of a data-
centric middleware including a live performance evaluation.

Index Terms—data-centric, service-centric, Internet of Things,
name-based, information-centric

2019 International Conference on Networked Systems (NetSys)2019 International Conference on Networked Systems (NetSys)

I. INTRODUCTION

The Internet of Things (IoT) provides an interface between
our physical surrounding and the virtual world. By connecting
distributed IoT devices, Pervasive Computing scenarios can be
implemented. An example is a software application that dims
the light up, opens the shutters, and makes breakfast at our
desired wake up time [1].

Implementing similar scenarios is possible today. However,
due to the distribution and heterogeneity of Things, it is
complex. To manage the complexity, more recently service-
oriented approaches were proposed [2], [3]. They modularize
complex IoT applications into mashups of several more-simple
and reusable microservices [4].

The IoT softwarizes our environments. The algorithms that
orchestrate the Things operate on input and output data. With
the Virtual State Layer (VSL), we present a data-centric
service-oriented middleware for IoT orchestration.

Core tasks of a service-oriented data-centric middleware are
discovering, reading, and writing data that belongs to other
IoT service. In our example, the wake-up control service could
write dim values into the data space of the lamp-control service
in order to dim the light up.

The VSL associates structured semantic data with each
IoT services that communicates over it. For different reasons
including the providing of security-by-design [5], the VSL
manages the data for services. In practice, a service registers
to one of the VSL entry points that are called Knowledge
Agent (KA). There it stores its data, and it uses the KA’s
programming interface (API) to couple with other services.

The described tuple-space communication [6] describes a
paradigm shift from addressing Thing to addressing data. This
is very similar to Information-Centric Networking (ICN), a
clean-slate approach for Internet communication [7], [8]. Also,
the VSL targets the management plane and not the data and
control plane like fundamental ICN approaches [9]–[11].

Support: German Federal Ministry of Economic Affairs and Energy
(BMWI) in DECENT (0350024A); German-French Academy SCHEIF.

Like [12], [13], the VSL implements ICN principles for
enabling comprehensive orchestration of the IoT. However,
the VSL does not propose replacing the Internet Protocol.
Instead, it is implemented as site-local, self-organizing Peer-
to-Peer overlay. The overlay enables co-existence-with and
retrofitting-to existing infrastructures.

Different to the related works, the VSL manages the en-
tire inter-service communication. This enables implementing
desired properties such as high scalability, high performance,
and a high level of security by-design [14] - meaning that the
provided mechanisms cannot be circumvented. As such it is
the first middleware that targets enabling a fully distributed
service App development for the IoT [15], [16].

The VSL represents IoT devices and software as hier-
archically structured data item graph. The data items can
be accessed transparently from every participating VSL KA
node. It offers different desired properties [17] including:

• a structured approach for representing IoT data [18]
• unified access to distributed service data (access trans-

parency, location transparency) [19]
• late coupling of services via semantic discovery [20]
• security-by-design [5]
Section II introduces the system architecture focusing on

overlay formation, data distribution, hierarchical addressing,
structured data, data retrieval, and caching. Section III assesses
the prototype’s latency. Section IV demonstrates the use.

II. THE DATA-CENTRIC VSL PEER-TO-PEER OVERLAY

Like other information-centric designs [12], [13], the VSL
offers data access via get/ set, and publish/ subscribe. In
addition, the VSL offers a synchronous coupling using streams
over so called Virtual data Nodes [19].

As described before, the Application Programming Interface
(API) of the VSL KAs is fixed. The variety between the
managed IoT entities (hardware and software) reflects in their
digital data twins. Our information model structures the digital
twins as hierarchically structured data nodes.

VSL data nodes are tagged with data types (e.g. integer)
and with functional identifiers (e.g. lightDimValue). To
facilitate the modeling, we offer an object oriented approach
that supports multi-inheritance [18]. To reach comparable
expressiveness to ontologies [21] without introducing their
complexity, we offer a modularized tagging approach [20].

When a service registers at a KA, it passes an identifier for
a VSL data model. This model gets then instantiated in this
KA and can be accessed by other services from that time on.
Each service is represented as a data node tree.

Figure 1 shows a running VSL system. In the middle in
the green VSL layer are the data model instances that thePreprint from s2labs.org

VSL
P2P
Overlay

Hardware
Underlay

Other Services

Gateway Services

Logical Connectivity

Physical Connectivity

Knowledge Agent

ActuatorSensor

local

local

local

local

Services

µ-
Se

rv
ic

e

vsl://[siteID]/[origSrcNodeID]/[origSrcServiceID]/[relNodePath]

Overlay
Routing
Lookup

1

2

Fig. 1. The data-centric VSL peer-to-peer overlay with its addressing scheme
(1) and current routing decision mechanism (2).

distributed VSL knowledge agents manage. The services on
top are associated with their specific set of VSL data items
each. The VSL runs on all IoT nodes with enough resources.

IoT data is not centrally stored but distributed. The data
distribution in the VSL follows a source principle: data is
always stored at the source. This is done as in contrast to
typical Internet traffic, the IoT has dynamically changing inter-
service communication relationships. This makes predicting
cache locations difficult [22]. Since the VSL fosters service
developers to store data in the KA instead of their service, and
since data access to other services always happens through the
connected KA, the source principle makes sense.

To enable unique addressing of the VSL peers, each node
has a locally unique identifier. As each site also has a globally
unique identifier [5], concatenating both leads to a globally
unique identifier per VSL KA peer. When exchanging data
between distributed IoT sites, this address can be used for
global routing. Figure 1 shows the mapping of the different
address parts to system features (1).

The VSL implements data discovery and routing as peer-
to-peer overlay. The KA peers map between overlay IDs and
the underlying substrate addresses that can be IP [17]. The
discovery of data node identifiers happens via the tags [17],
[20], e.g. get/search/of-type/lamp returns all data
node instance addresses that are tagged with the type lamp.

The tag-based data node lookup happens KA-locally. The
KAs regularly send pings over IP v6-multicast/ v4-broadcast
to discover their peers. In addition, all site-local KAs synchro-
nize, which data nodes they contain. This information includes
the type and function types. Figure 1 shows this in the middle
area. The different colors represent the different data sources.

Having all data locally enables a fast and resilient search for
where data nodes can be retrieved. Together with the P2P node
ID/ IP mapping, the corresponding KAs can be addressed. This
mechanism works transparent for cached copies. However,
knowing which data item is the most recent is an open
challenge we are currently working on [17], [22].

Security is a key challenge of the IoT. IoT data is inherently
threatening user privacy [23]. The VSL therefore protects all
its components by adding a digital identity through X.509

certificates to it [24]. It also enables adding secured meta data
[5]. Each VSL data node has identifiers set for read and write
access. Those are matched with the identifiers that a service
carries resulting in effective access control by-design [14].

III. EVALUATION

Compared to direct service coupling, using the VSL for
inter-service communication introduces latency via the KA
processing. We therefore evaluate the added latency for ac-
cessing data of another service. For a more detailed usability,
performance, scalability, and security see [17].

The access to VSL data nodes happens via get/ set on
regular VSL nodes that are managed by the VSL KAs (regular
coupling), and via direct function calls over virtual VSL nodes
(virtual coupling) [19].

Latency is particularly relevant when mashing-up multiple
IoT services, as it potentially adds up. Via the P2P overlay,
all KA nodes are only one hop away.

In our measurement we assume full connectivity, making
one overlay hop equal to one layer 2 hop. This does not
necessarily reflect actual IoT deployments. However, as there
is no IoT reference architecture, at least it enables comparable
and reproducible measurements.

The same applies for our testbed resources. We used Intel
Core i5 computers that are connected over 1GBps network
links. This ensures that we do not run into a bottleneck with
our measurement. The load on the nodes was always low.

For each test we measured 20000 independent get and
set accesses on VSL data nodes. Table I shows the average
latencies for the different coupling modes.

Operation local remote
regular virtual regular virtual

get 1.3 ms 1.6 ms 10.4 ms 10.8 ms
set 1.9 ms 2.6 ms 9.3 ms 10.0 ms

Table I
Average delay of 20000 independent get/set requests.

The evaluation shows that the performance for requests on
target services running on the same node is around 1.3-2.6
ms. For remote requests we achieve delays around 10 ms. The
publish/ subscribe notifications on node data changes happen
instantaneous, resulting in identical latencies to local accesses.

For the local and remote measurement under both coupling
modes are low enough for mashing up to 20 always-remotely
coupled, and about 70 locally running services. Such a com-
plex application can still provide a real-time user experience.

IV. DEMO

We demonstrate the data-based coupling and the service-
orientation of the VSL. Our demo consists of two components:

• A smartphone based low-level controller.
• A light sensor based game.
Figure 2 gives an overview on our setting. The smartphone

allows users to discover data items of the VSL type light. In
our setting we have 2 alarm lights and 2 lights at our special
game controllers. Via pre-formulated VSL queries, all found
lights can be switched either by address or by type. This shows

Raspberry Pi 3 Model B V1.2

Power

HDMI
Audio

U
SB

 2
x

U
SB

 2
x

ET
H

ER
N

ET

D
SI

 (D
IS

PL
AY

)

CSI (CA
M

ERA
)

GPIO

© Raspberry Pi 2015

µS

VSL

µS

µS

Raspberry Pi 3 Model B V1.2

Power

HDMI
Audio

U
SB 2x

U
SB 2x

ETH
ERN

ET

D
SI (D

ISPLAY
)

CS
I (

CA
M

ER
A

)

GPIO

© Raspberry Pi 2015

µS

VSL

Raspberry Pi 3 Model B V1.2

Power

HDMI
Audio

U
SB 2x

U
SB 2x

ETH
ERN

ET

D
SI (D

ISPLAY
)

CS
I (

CA
M

ER
A

)

GPIO

© Raspberry Pi 2015

µS

VSL

µS

Virtual State Layer ICN

S1 S2

Interactive
Data

Queries

Trigger Latency Monitor

 0

 5

 10

 15

 20

 25

 30

 35

vset (1) set (2) vget (3) get (4)

7

7

8 8

Ti
m

e
in

 M
ill

is
ec

on
ds

VSL operation

local measurement
remote measurement

difference of the mean values

Gateway

Highscore Collector

µS

VSL

Microservice
VSL Interface

Data Items

Fig. 2. The planned demo setup.

how the type-based discovery decouples services. It also shows
the latencies of the operations.

The game part consists of multiple services. A Gateway
interfaces our game controllers, a Trigger triggers randomly
between 5-15s, and a Highscore Collector collects and dis-
plays the highscore. The game controllers consist each of an
ambient light sensor that detects if covered or not, and LED
indicators. The player’s hands can cover the sensors.

When both controller’s light sensors are covered, the game
starts. Once the trigger fires, both controllers get the signal
to switch their lights on. Then an internal timer starts that
measures the time until the player’s hand is removed from the
light sensor. The measured time is provided to the Highscore
Collector, and the winning controller blinks. Also the corre-
sponding alarm light starts. If the player removes the hand
before the light goes on, the controller reports ∞ as time and
starts blinking immediately.

The Latency Monitor shows the most recent VSL queries
and their latencies. As such, the perceived latency of the game
and the quantitatively measured latencies give an overview on
the VLSs latency.

Both setting run simultaneously, enabling interesting inter-
action as the smartphone can fire the game trigger.

V. CONCLUSION

The Virtual State Layer (VSL) middleware shows how the
Internet of Things (IoT) can benefit from data-centric service-
oriented orchestration. The implementation as peer-to-peer
overlay allows running on top of the existing Internet while
introducing the benefits of a new ICN principle-based design.

We introduced key mechanisms of the VSL, the modular
modeling of digital twins, the globally unique addressing
scheme, and the routing mechanism. We discussed our plans
for using caching, and summarized the security-by-design
properties. We evaluated the performance showing the effects
of the implemented distributed data management. Our demon-
stration setting interactively illustrates the practical use and
the properties of the system.

Our work shows how ICN principles can well be retrofitted
into existing IoT networks. We hope that our work can
contribute towards pushing the adoption of an integrated and
secure IoT further into the real world.

REFERENCES

[1] M. Weiser, “The Computer for the 21st Century,” Scientific American,
vol. 265, no. 3, pp. 94–104, Sep. 1991.

[2] D. Lu, D. Huang, A. Walenstein, and D. Medhi, “A Secure Microservice
Framework for IoT,” in 2017 IEEE Symposium on Service-Oriented
System Engineering (SOSE. IEEE, 2017, pp. 9–18.

[3] M.-O. Pahl, G. Carle, and G. Klinker, “Distributed Smart Space Or-
chestration,” in Network Operations and Management Symposium 2016
(NOMS 2016) - Dissertation Digest, 2016.

[4] M.-O. Pahl, H. Niedermayer, H. Kinkelin, and G. Carle, “Enabling
Sustainable Smart Neighborhoods,” in 3rd IFIP Conf. on Sustainable
Internet and ICT for Sustainability (SustainIT), Palermo, Italy, 2013.

[5] M.-O. Pahl and L. Donini, “Giving iot edge services an identity
and changeable attributes,” in International Symposium on Integrated
Network Management (IM), Washington DC, USA, Apr. 2019.

[6] D. Gelernter, “Generative communication in Linda,” ACM Transactions
on Programming Languages and Systems (TOPLAS), 1985.

[7] A. Lindgren, F. B. Abdesslem, B. Ahlgren, O. Schelén, and A. M. Malik,
“Design choices for the IoT in Information-Centric Networks,” 13th
Consumer Communications and Networking Conference (CCNC), pp.
882–888, 2016.

[8] M. Amadeo, C. Campolo, A. Iera, and A. Molinaro, “Named data
networking for IoT: An architectural perspective,” EuCNC 2014 -
European Conf. on Networks and Communications, no. July 2015, 2014.

[9] T. Koponen, M. Chawla, B.-G. Chun, A. Ermolinskiy, K. H. Kim,
S. Shenker, and I. Stoica, “A data-oriented (and beyond) network
architecture,” ACM SIGCOMM Computer Communication Review, 2007.

[10] V. Jacobson, D. K. Smetters, J. D. Thornton, M. F. Plass, N. H. Briggs,
and R. L. Braynard, “Networking named content,” in 5th int. conf. on
Emerging networking experiments and tech. ACM, 2009.

[11] B. Ahlgren, V. Vercellone, M. D’Ambrosio, M. Marchisio, I. Marsh,
C. Dannewitz, B. Ohlman, K. Pentikousis, O. Strandberg, and R. Rem-
barz, “Design considerations for a network of information,” Proceedings
of the 2008 ACM CoNEXT Conference on - CONEXT ’08, 2008.

[12] S. Chatterjee, “A Survey of Internet of Things (IoT) over Information
Centric Network (ICN),” no. August, pp. 0–18, 2018.

[13] S. Arshad, M. A. Azam, M. H. Rehmani, and J. Loo, “Recent Advances
in Information-Centric Networking based Internet of Things,” IEEE
COMM. SURVEYS & TUTORIALS, 2018.

[14] A. Cavoukian, “Privacy by Design: Leadership, Methods, and Results.”
European Data Protection, pp. 175–202, 2013.

[15] M.-O. Pahl, “Multi-tenant iot service management towards an iot app
economy,” in HotNSM workshop at the Int. Symposium on Int. Network
Management (IM), Washington DC, 2019.

[16] M.-O. Pahl and G. Carle, “Taking Smart Space Users into the Develop-
ment Loop: An Architecture for Community Based Software Develop-
ment for Smart Spaces,” in Proceedings of the 2013 ACM Conference
on Pervasive and Ubiquitous Computing Adjunct Publication. New
York, NY, USA: ACM, 2013, pp. 793–800.

[17] M.-O. Pahl and S. Liebald, “Designing a Data-Centric internet of things,”
in 2019 International Conference on Networked Systems (NetSys) (Net-
Sys’19), Garching b. München, Germany, Mar. 2019.

[18] M.-O. Pahl and G. Carle, “Crowdsourced Context-Modeling as Key
to Future Smart Spaces,” in Network Operations and Management
Symposium 2014 (NOMS 2014), May 2014, pp. 1–8.

[19] M.-O. Pahl, “Data-Centric Service-Oriented Management of Things,” in
Integrated Network Management (IM), 2015 IFIP/IEEE International
Symposium on, Ottawa, Canada, May 2015, pp. 484–490.

[20] M.-O. Pahl and S. Liebald, “A modular distributed iot service discovery,”
in International Symposium on Integrated Network Management (IM),
Washington DC, USA, Apr. 2019.

[21] U. Aßmann, S. Zschaler, and G. Wagner, “Ontologies, Meta-models, and
the Model-Driven Paradigm,” in Ontologies for Software Engineering
and Technology, C. Calero, F. Ruiz, and M. Piattini, Eds. Berlin
Heidelberg: Springer, 2006, pp. 249–273.

[22] M.-O. Pahl, S. Liebald, and L. Wüstrich, “Machine-learning based IoT
Data Caching,” in Integrated Network Mgmt. (IM), 2019 HotNSM at
IFIP/IEEE International Symposium, Washington, USA, 2019.

[23] M.-O. Pahl and F.-X. Aubet, “All eyes on you: Distributed Multi-
Dimensional IoT microservice anomaly detection,” in 14th Int. Conf.
on Network and Service Management (CNSM), Rome, Italy, Nov. 2018.

[24] M.-O. Pahl and L. Donini, “Securing IoT Microservices with Certifi-
cates,” in Netw. Operations and Man. Sym. (NOMS), Apr. 2018.

