
Information-Centric IoT Middleware Overlay: VSL
Marc-Oliver Pahl, Stefan Liebald

Technische Universität München
Email: {pahl,liebald}@s2o.net.in.tum.de

Abstract—The heart of the Internet of Things (IoT) is data. IoT
services processes data from sensors that interface their physical
surroundings, and from other software such as Internet weather
databases. They produce data to control physical environments
via actuators, and offer data to other services.

More recently, service-centric designs for managing the IoT
have been proposed. Data-centric or name-based communica-
tion architectures complement these developments very well.
Especially for edge-based or site-local installations, data-centric
Internet architectures can be implemented already today, as they
do not require any changes at the core.

We present the Virtual State Layer (VSL), a site-local data-
centric architecture for the IoT. Special features of our solution
are full separation of logic and data in IoT services, offering
the data-centric VSL interface directly to developers, which
significantly reduces the overall system complexity, explicit data
modeling, a semantically-rich data item lookup, stream connec-
tions between services, and security-by-design. We evaluate our
solution regarding usability, performance, scalability, resilience,
energy efficiency, and security.

Index Terms—Internet of Things, middleware, data-centric,
service-centric, name-based, information-centric

2019 International Conference on Networked Systems (NetSys)

I. INTRODUCTION

In the Internet Protocol (IP) based Internet, communication
is host-based. Most applications in today’s Internet are not
host-centric but data-centric [1]. Examples are the World
Wide Web (WWW), video or audio streaming. For these
applications, it is not relevant from where data actually comes
but to get the right data. A data-centric design fits better. [2]

For more than 10 years, researchers work on Information
Centric Networking (ICN) [1]. ICN does not address hosts
but data chunks. Typically, in-network caches improve latency,
scalability, reliability, and energy efficiency of ICN systems
compared to host-based addressing. Characteristic aspects of
ICN designs are naming, caching, decoupling of producer and
consumer, and built-in security.

The Internet of Things (IoT) is a part of the Internet that
continuously gains importance. It can be characterized by a
huge amount of globally distributed sensors and actuators that
enable software services to interact with physical spaces. The
IoT is a complex domain due to the distribution of its devices,
and due to the heterogeneity of application scenarios [3]. Its
traffic often consists of small data chunks that are exchanged
between devices and services that orchestrate them [4].

Many IoT applications benefit from ICN-principles. There-
fore, several ICN for IoT designs have been proposed in the
past [5], [6]. ICN and the related Delay Tolerant Network
(DTN) designs can enable lower latency, higher resilience, bet-
ter scalability, and less energy usage [2]. All these properties

are desired for the IoT. In fact, ICN principles are even more
desirable for the IoT than for other Internet applications as the
IoT has typically less, and less reliable resources.

Similar to [7] in this work we apply ICN principles at the
edge of the Internet, more precise at site-local IoT system
level. We present the data-centric Virtual State Layer (VSL)
middleware. It pushes ICN’s decoupling of data from hosts
further by even decoupling data from services on a host. We
show how the VSL provides ICN/ DTN properties.

For compatibility reasons with existing IP-based IoT in-
stallations, we implemented our pilot as self-organizing Peer-
to-Peer (P2P) overlay. It enables data-centric inter-service
communication within and in-between IoT hosts. The VSL
uses a hierarchical naming scheme. For consistency reasons,
the VSL stores data at the source only at the moment. Work
on suitable caching mechanisms is ongoing and discussed.

The VSL fully decouples data producers and consumers. It
enables access via get and set, subscriptions to changes, and
stream connections. Pushing the data-centric principle further,
the VSL fosters a full separation of service logic and data. As
consequence it can deliver service data even when a service
is not running. This increases the resilience and possibly the
energy efficiency of IoT nodes.

The VSL provides security-by-design [8], which is only
possible as service logic and data are decoupled, and all inter-
service communication goes through the VSL.

Major contributions of our approach are:
• Full separation of service logic and data.
• Offering the data-centric interface as Application Pro-

gramming Interface (API), reducing the overall complex-
ity significantly.

• Explicit data modeling.
• A distributed, semantically-rich data item lookup.
• Stream connections between services.
• Security-by-design.
The paper introduces the VSL system architecture (sec-

tion II), including service and system model, API, data struc-
turing, naming, placement, caching, discovery, transformation,
separation of logic and state, and security mechanisms. Sec-
tion III discusses the usability, performance (latency), scalabil-
ity (throughput), resilience and energy efficiency, and security
of our solution. Section IV discusses relevant state of the art.

II. SYSTEM ARCHITECTURE

We structure our architecture presentation similar to the
assessments in the surveys [5], [6]. The fundamental principle
behind our architecture is modularity. Services using our mid-978-1-7281-0568-0/19/$31.00 ©2019 IEEE

Logical Connectivity
VSL Overlay (data-centric)

Physical Connectivity
Hardware Underlay (host-centric)

Semantic Discovery
VSL Search Providers

Global S2Store

Services

Knowledge Agent
A

da
pt

at
io

n
Se

rv
ic

e

A
dv

an
ce

d
R

ea
so

ni
ng

O
rc

he
st

ra
tio

n

U
se

r
In

te
rf

ac
e

...
ActuatorSensor

lo
ca

te
d-

in

ow
ne

d-
by

Site-local VSL-operated IoT Space

Context Model
Repository

C
M

R

2

3

1

of
-t

yp
e

of
-t

yp
e

of
-t

yp
e

of
-t

yp
e

4

Kn
ow

le
dg

e
Ag

en
t Knowledge

Object
Repository

Transport Manager

Storage
Security

Cache
Logic

Request Router

Overlay Manager

Connection Manager

1

Access Control

Fig. 1. Data-Centric Virtual State Layer IoT System Architecture.

dleware build complex functionality by mashing-up smaller
building blocks. So does the VSL middleware itself.

A. Service Model
More recently, microservice-based approaches for managing

the IoT were proposed [9], [10]. In a microservice-based
IoT, several microservices federate dynamically to implement
complex applications. We assume that the available resources
of IoT devices will continuously increase as we have seen it
for Mobile Computing smartphones [11]. IoT nodes such as
light switches will soon have enough computational power to
run IoT microservices.

To manage the complexity of the IoT we target a microser-
vice architecture where independently running IoT services
dynamically federate to implement IoT scenarios [9], [10],
[12]. Relevant service types include:

• Adaptation Services interface IoT hardware and software
components, e.g. for obtaining Internet weather data,

• Reasoning Services filter and enrich existing data,
• Orchestration Services federate and compose services,
• User Interface Services provide user controls.

Following, we illustrate the concept with a climate control.
An Orchestration Service for temperature control federates an
Adaptation Service with a thermometer, an Adaptation Service
that actuates the valve of a heater, and possibly one or multiple
Reasoning Services for transforming units. A User Interface
Service can be involved to get the humans in the control loop.

In our setting all services are autonomous, enabling them
to co-exist independently. Data producers and consumers are
fully independent. In a time-sharing manner they federate,
making a shared use of the installed hardware for implement-
ing different applications possible.

For such a setting, a suitable communication infrastructure
needs to provide a dynamic discovery mechanism that is driven
by the local IoT applications [13]. It requires providing suit-
able inter-service coupling mechanisms that do not limit the
applications [9], [14], and providing a suitably high security
level regarding storage and exchange of data [15]–[18].

B. System Model

Figure 1 shows our system architecture. It consists of four
layers. The lowest layer (blue) contains the IoT hardware: IoT
compute nodes (shown as computers), sensors, and actuators
(shown as triangles). This layer provides the Physical Con-
nectivity between the participating nodes.

The next layer provides Logical Connectivity. It implements
our data-centric VSL that spans distributed IoT nodes via its
so-called Knowledge Agents (KA) (1). The KAs offer a data-
centric interface to services. This API enables querying data
items from the local Knowledge Object Repository (KOR),
and via the connected KAs from their KORs that store the
IoT data (section II-F).

For being compatible with existing deployments, we im-
plement the KA connectivity as Peer-to-Peer (P2P) overlay.
It uses IP multicast and unicast connections for exchanging
information. The VSL uses IP multicast to maintain the
overlay and unicast for directed data exchanges.

The right side of fig. 1 details the components of a KA (1).
The transport manager uses protocols such as HTTP over TCP/
IP as transport. The Transport Manager, Connection Manager,
and the Overlay Manager maintain the P2P overlay. The entire
inter-node connectivity is encapsulated in these modules.

Our transport can easily be exchanged with other com-
munication protocols. It is simply our way to implement a
communication channel between distributed nodes. With larger
multi-hop installations, replacing the IP layer with a name-
based routing approach could become interesting in the future.
The architecture is prepared for that.

From now on we assume that the KAs can communicate
over an abstract interface that allows data exchange. As
northbound interface to services and as southbound interface
to other KAs, the VSL overlay provides data access based on
unique hierarchical data item identifiers.

The next layer offers Semantic Discovery. Services com-
municate by accessing each other’s data items. However, for
discovery they use a semantic lookup based on predicates

such as function identifier, data type, location, or owner of
a data item. Following a modular approach, such discoveries
are implemented as so-called Search Providers that can be
plugged in at runtime (section II-H).

The top layer contains the services. Services only connect
to the next, typically locally running KA to get access to the
data-centric VSL communication primitives (section II-C).

We do not target replacing protocols towards resource
constraint devices such as 802.15.4, KNX, or CoAP. Instead,
we interface them with Adaptation Services. They run on
resourceful nodes that have corresponding hardware interfaces
as shown on three nodes in the Physical Connectivity layer.

We overcome IoT device protocol heterogeneity by in-
troducing digital twins for each managed entity including
IoT software and hardware (section II-D). A digital twin
is a VSL data structure exposing all properties that can be
monitored and controlled. Combined, the VSL data represent
all capabilities and states of an IoT space. Therefore, we call
our abstraction Virtual State Layer (VSL).

Services manage the consistency of the digital twins in the
VSL with their managed counterparts. These adapter services
have a device-specific interface at their southbound interface,
and a standardized VSL context model, which describes the
digital twin, as northbound interface (section II-D). They
reflect changes between the context model instance and the
entity at the southbound interface that could be a smart power
plug, or an email interface.

C. VSL API

The VSL implements a data-centric blackboard communi-
cation pattern. Services communicate over data items that are
managed by the VSL KAs, and accessed through its API.

IoT scenarios are only limited by the creativity of their
developers and the available hardware. For enabling the imple-
mentation of diverse applications, the VSL offers three inter-
service couplings over its data nodes:

1) Asynchronous Communication via Get/ Set enables ser-
vices to store and retrieve data items fully decoupled
in time and space. The persistent storage of the VSL
overcomes the time aspect, the overlay’s location trans-
parency the space boundary.

2) Synchronous Communication via Publish/ Subscribe al-
lows services to subscribe on changes of given data
nodes. Once the current value of the node changes, a
callback into the subscribing service is triggered.

3) Synchronous Communication over Sockets enables ser-
vices not only to communicate synchronously but em-
ulates function calls with parameters over so-called
Virtual Nodes [14].

The last mechanism is very powerful and typically not found
in data-centric middleware. It is the base for the modular
design of the VSL. The data discovery Search Providers
(section II-H) make heavy use of this feature. In short, a func-
tion call is implemented as access to a virtual VSL address:
vsl://ka1/service2/function/param1/param2/

D. Data Structuring

VSL data represents the digital twins of the entities a service
manages. In a data-centric design, data becomes the interface
of a service (section II-C) [14].

For enabling the intended dynamic mashup of services, a
convergence of the VSL data models e.g. for lamps is required.
Having one data type per semantic functionality is essential to
decrease the software development complexity. As an example,
if all services that control lamps offer a different data model
as semantic interface, an application developer who wants to
shut off all lamps has to interface all different models. In [19]
we discuss methods to solve this.

A methodology for structuring VSL data is not only required
for interface convergence but also for data discovery [13]. The
VSL offers an object-oriented information model that facili-
tates the creation of service data models [19]. Coming from
the application development perspective, these data models are
called VSL Context Models.

A Context Model is a hierarchical data structure. The VSL
information model uses only the two predicates is-a and has-
a. Based on the concepts text, number, list, and composed,
complex data types can be built. Such types can be named,
acting as functionality tags, e.g. /lamp/dimmableLamp.

The data type composed implements the has-a relationship
by aggregating already defined types as subnodes of its tree
root. The data type list is the only data structure that can be
altered at runtime within potential restrictions.

All other node types implement is-a relationships. They can
be derived for introducing semantic identifiers, e.g. “isOn” for
a binary value defined as {0, 1} restricted set of type number.

For enabling reuse, portability, and standardization, VSL
context models are shared over a global directory that is
called Context Model Repository (CMR) [19]. Its purpose is to
standardize model definitions by acting like yellow pages for
context models. Each model therefore has a unique ModelID
and a corresponding specification in the CMR. See fig. 1 on
the right (3). Developers can look existing models up and reuse
them in their own creations.

Listing 1 shows the definitions of the VSL Context
Model types lamp and dimmableLamp. The listing illus-
trates how the inheritance facilitates the definition of the
dimmableLamp type. It also shows how inheritance can be
used to stay compatible with existing types [19].

Via subtyping the dimmableLamp model remains com-
patible with the lamp model. As the data models are the
interfaces of the VSL services, this compatibility means
that a service that can control lamps can still control
dimmableLamps. In other words, dimmableLamp imple-
ments the semantic lamp interface.
1 <lamp type="basic/composed">
2 <isOn type="isOn">0</isOn>
3 </lamp>
4
5 <dimmableLamp type="lamp">
6 <dimValue type="dimValue">100</dimValue>
7 </dimmableLamp>

Listing 1. Definition of two VSL context models.

1 <service42 type="dimmableLamp, basic/composed">
2 <isOn type="isOn, basic/number" restriction="

maxValue=1, minValue=0">1</isOn>
3 <dimValue type="dimValue, basic/number">50</

dimValue> </service42>
4 </service42>

Listing 2. VSL instantiation of the dimmableLamp model.

Context Model RepoVSL Instance

KA

Service

Service

Service

A

V

G

F

Q

F

S1

S2

S3

KA

Service

Service
A

OD

F

S1

S2

KA

Service

Service

Service

E

VUS1

S2

S3

VQ

VP

G
P

KA1 KA2 KA3
VUZ5

VQ

W2

VP

G
P

…

instanti
ate

Fig. 2. Context Data managed by distributed KA peers and the CMR.

Listing 2 shows an instance of the dimmableLamp VSL
Context Model within an IoT site. Figure 2 illustrates how
data that is detailed in listing 2 is distributed over different
KAs. The figure shows three IoT computing nodes running a
VSL KA each. KA1 and KA3 run three services S1-3 each.
KA2 runs two services. The context models are specified in
the CMR as is indicated on the right. For each VSL modelID
there is a tree of data nodes, e.g. Z5.

Each VSL service is associated with one specific context
modelID. When a service gets started, the corresponding
context model is loaded via the local CMR from the global
one as shown with the arrows. The service’s KA then creates
a local instance that becomes the service’s state space. From
that point in time the CMR is not needed anymore.

To increase the performance of the instantiation, context
models are cached site-locally. This is shown in fig. 1 with
the site-local CMR node (2). It is the caching interface for all
local KAs to the CMR.

E. Naming

The VSL uses a hierarchical namespace. VSL addresses
identify the original source of a data item. Following the ar-
chitecture shown in fig. 1, the VSL names identify data nodes
belonging to a service on a KA. Though the VSL manages
data locally, it is possible to connect worldwide distributed
VSL IoT Spaces. Therefore, we add the siteID for getting
globally unique identifiers per data item: vsl://[siteID]
/[kaID]/[serviceID]/[subNodeAddress]/...

The siteID is unique for each edge-based VSL site. The
kaID is unique for each Knowledge Agent. The serviceID is
node-locally unique for each service. The subNodeAddress is
unique within the service’s data.

The hierarchical names facilitate debugging. Though they
seem to bind data to KAs, the names do not necessarily locate
VSL data model instances (section II-D). In fact, meaningless
hashes could be used as address for a model’s root node.

F. Data Placement

The VSL uses a source placement, storing data always at the
source. Fostering microservice mashups makes inter-service
communication highly frequent. Therefore having data close to
the processing services is beneficial. The logical consequence
of the VSL’s separation of service logic and data (section II-J)
is storing data at the KA where a service runs.

Locality is especially beneficial to support low latency and
high throughput via the IoT’s heterogeneous communication
links. Often a KA runs locally on the same IoT node like a
service. However, with the VSL’s full location transparency,
data can be stored on any KA.

G. Data Caching

Each VSL data item has a unique identifier (section II-E).
When a service provides new data items, e.g. values for a
given address, they get unique IDs. We implement this by
attaching a version number to the VSL node address, and
pointing the address without trailing number to the newest
value. Consequently, VSL data can easily be cached.

With its subscribe model (section II-C), the VSL offers a
suitable mechanism for keeping on-path caches up-to-date.
However, this comes at communication and processing costs.

It is difficult to guarantee that a cached value is the newest
available value. In addition, cache coherency on write is a
challenge. This case happens when a value of an actuator, e.g.
door/isOpen is set.

For consistency reasons, and as we only have very limited
multi-hop scenarios site-locally, we do not cache data in the
VSL at the moment. However, we currently experiment with
different caching strategies for decreasing the latency and
increasing the resilience in case of KA failures [20].

H. Data Discovery

The IoT is a dynamic environment. Entities join and leave
frequently. In addition, our microservice based IoT orchestra-
tion requires services to discover each other frequently in order
to run scenarios on the shared infrastructure (section II-A).

For meeting the described dynamics, VSL services do not
bind statically using the VSL addresses but run a lookup to
identify suitable currently available coupling candidates. All
services communicate via the VSL API (section II-C) and use
the standardized context models (section II-D). This provides
interface compatibility that enables mashups.

Built-in, the VSL uses type tags for data nodes. Each data
node can have one to many data types [19]. As briefly intro-
duced in section II-D, a VSL node typically has a data type
identifier (e.g. basic/number, and a functional identifier
(e.g. lightin/hue123/dimValue).

A type-based example lookup for the VSL type lamp
is get /search/type/lamp. As result, the requester
gets all addresses of type lamp, e.g. the instance address
/SID123/KA4/service42. See listing 2.

A discovery on these tags is provided by the KAs. However,
the diversity of IoT applications often requires different or
additional discovery predicates than the described of-type.

The VSL offers a plug-in concept for so-called Search
Providers [13]. A search provider implements a predicate such
as located-in, or owned-by.

Via Virtual Nodes (section II-C), Search Providers can
be plugged-in transparently at runtime. Discovery requests
are automatically routed to the right Search Provider by the
KAs. This request routing becomes possible as the discov-
ery of Search Providers uses the built-in type search, e.g.
system/searchProvider/locatedIn.

All Search Providers offer the same interface (section II-D).
Therefore, we can offer a first order logic search federa-
tion service that enables complex semantic discoveries for
VSL data node identifiers (section II-E). A sample query is
get/search/metaQuery/locatedIn/livingRoom/
AND/ownedBy/mop/AND/of-type/light. The first pa-
rameter identifies the search provider, requests should be
routed to. The other parameters are the search objects [13].

Type searches are most frequent. They enable decoupling
services from their running location, which enables the desired
late coupling. For a fast type search, the VSL periodically
replicates the information of all available data nodes and their
types between all KAs in a site. This enables executing the
type search locally on a KA guaranteeing a fast result. In
contrast to a distributed search, e.g. via flooding, the local
discovery is also terminating deterministically. With flooding
it is uncertain, if and when all nodes responded.

For non-built-in Search Providers it is up to the developer to
implement a suitable replication and load balancing. The built-
in type search has full #KA-resilience. All discovery queries
return a list of VSL identifiers (section II-E). The addresses
are then accessed by a service in order to get the desired data.

I. Data Transformation

The VSL’s digital twins (section II-D) bridge a large part of
the IoT heterogeneity already. However, on a higher semantic
level such functionality is highly application specific. An
example is a service that needs a temperature in Celsius or
in Fahrenheit. Another service requires to know if it is a nice
day, but locally only a brightness sensor, a temperature sensor,
a rain sensor, and a wind sensor are available.

With the VSL Reasoning Services (section II-A) a category
of services exists that does such data transformations. In
combination with the VSL Data Discovery (section II-H)
such data transformation can be automatically included in the
service mashup process. When a suitable Reasoning Service is
available, it will be discovered and invoked, and consecutively
transparently transform the available data as requested [14].

J. Separating Logic and State

The VSL offers services the functionality to store and
retrieve data items from all over the network. Pushing the data-
centric principle further, we foster to fully separate service
logic and state. All data is then managed within the VSL.

This makes the VSL architecture resilient against service
failures on nodes. It also enables potentially saving energy
by stopping services that are not required at the moment.

Their data remains available. Most important, it takes the
burden to implement adequate service access security from
the developers. The VSL manages all communication and can
therefore enforce security by design [15]–[17].

K. Security

Different from most data-centric IoT designs [5], [6] the
VSL consists of data managing agents, the KAs. These agents
self-organize in a P2P manner. IoT data is inherently privacy-
critical, as it typically consists of measured or otherwise col-
lected personal data, e.g. temperature and music preferences.
By outsourcing data and communication security into the VSL
(section II-J), a crowdsourced development of IoT services/
Apps [12], [21] becomes realistic.

To implement the desired and required security by design
[8], the VSL uses certificates that are pinned to all compo-
nents: each service, and each KA. The distribution and renewal
of these certificates is automated [15], [17].

The used X.509v3 certificates enable authenticating the soft-
ware components. They also enable establishing TLS-secured
communication between the KAs (section II-B). Finally, they
enable the secure exchange of keys for encrypted stores, e.g.
encrypted local databases that store the VSL data.

On top of this basic security, the VSL implements group-
based access control for read and write accesses to VSL data
nodes. Each service has a pre-defined set of group identifiers
that are matched with the identifiers in accessed data model
instances [15]. As the KAs are trusted, they can effectively
mediate all accesses [16].

Not only the type information but also the access modifiers
are synchronized between the KAs. Consequently, VSL node
discoveries filter the results based on a service’s access IDs
at the source already. As a result, only those VSL addresses
(section II-E) are returned that are accessible by the service.

III. EVALUATION

The VSL is fully implemented in Java. This enables running
KAs on diverse operating systems. It also facilitates the
development of functionality. The cost is a larger executable
footprint, and a lower performance.

For the quantitative measurements we used a testbed with
“unlimited” resources: i5 computers with SSD, 4 Gigabyte
RAM, and 1GBps Ethernet. Since future IoT device gener-
ations will be faster we want to prevent bias from scarce
resources.

A. Usability: Continuous Evaluation

The VSL targets facilitating the implementation of IoT
scenarios. We evaluated this with more than 150 student testers
that were beginners with the IoT, somehow familiar with Java,
and did not use the VSL before.

To illustrate the use of the VSL API, listing 3 shows a data
retrieval. The VslConnector connects the service to its KA. Its
required setup code is below 10 lines and not shown. In line
2 we search the VSL for all data items of type lamp using
the special /search/type address prefix with the searched

set/get

set/get

Computing Node 2Computing Node 1

ServiceDServiceC KA1 KA2

Virtual Node

call

return

notify1

2

Fig. 3. Measurement Setup.

Operation local remote
regular virtual regular virtual

get 1.3 ms 1.6 ms 10.4 ms 10.8 ms
set 1.9 ms 2.6 ms 9.3 ms 10.0 ms

Table I
Average delay of local/remote get/set requests (20000 each).

type as suffix. In line 4-6 for each retrieved address we print
whether the lamp is active or not.

Typical VSL service modules developed by the students
were below 100 lines of code. With our powerful data-centric
abstraction that suffices to implement microservices and their
mashups for complex IoT scenarios.

1 p u b l i c vo id p r i n t L a m p s (V s l C o n n e c t o r con) {
2 S t r i n g [] add r = con . g e t (” / s e a r c h / t y p e / lamp ”)

. g e t V a l u e () . s p l i t (” / / ”) ;
3 / / e . g . [” / ka1 / lamp1 ” , ” / ka2 / lamp2 ” , . . .]
4 f o r (i n t i =0 ; i<add r . l e n g t h ; i ++){
5 System . o u t . p r i n t l n (
6 con . g e t (add r [i]+ ” / isOn ”) . g e t V a l u e ()) ; }}

Listing 3. Example VSL call to print the state of all available lamps.

The students get a tutorial and have to implement a complex
use case on their own. All manage to do so in less than 20h.
This is remarkable as in the only quantitative study with a
comparable middleware, experienced developers implemented
a workflow of similar or lower complexity only in 120h [22].

73% rated the VSL API as well suitable or even easy-to-use
for beginners. 67% described the task difficulty as well doable
or easy.

Both results confirm that the VSL is a powerful abstraction
that is so simple that beginners can start using it within
short time. At the same time it shows how powerful the
programming abstraction is as it also fits well for the individual
extensions made by the students.

B. Performance

The time-sequence diagram in fig. 3 illustrates the VSL
communication via regular node accesses (1) and Virtual Node
accesses (2). For both we measured 20000 times the latency
for local and remote accesses. Figure 3 shows the remote case.
In the local case, both KAs are merged.

For get operations we measure the time between issuing
the command in the client and its return. For the set operation
we wait until the operation finishes updating the value without
returning an error. Table I shows the measured average delays.

The evaluation shows that the performance for requests on
target services running on the same node is around 1.3-2.6 ms.
For remote requests we achieve delays around 10 ms, which
is quite low and suitable for IoT applications. While local get

requests are slightly faster on average than set requests, it is
the opposite for remote requests.

The additional overhead comes most likely from serializing
the response and sending it over the network. For set requests
there is only a short status code sent back in case no error
occurs, with no additional payload. Subscriptions return with
neglectable delay in the regular node case, making this mech-
anism suitable for synchronous coupling.

C. Scalability

We measure the scalability with 48 IoT services, equally
distributed over 6 KAs. On each KA seven measurement
clients and one accessed target run. All measurement services
randomly query either the local or a remote target service.

Each client measures the throughput of 1500 get and set
request bursts for regular and virtual nodes. The experiment
is repeated with five, three and one clients per KA. In total
around 1.2 million data points were collected. A regular IoT
load can be expected to be significantly lower. The results can
therefore be interpreted as stress test.

Figure 4 shows the results for node-local accesses. The
values for the remote accesses are about 10 times less requests
per second and 10 times longer runtime.

 0

 1000

 2000

 3000

 4000

 5000

 6000

 0 5 10 15 20 25 30

N
u
m

b
e
r

o
f

p
ro

ce
ss

e
d

 r
e
q

u
e
st

s
p

e
r

se
co

n
d

Run time of the measurement in seconds

42
30
18

6

Fig. 4. Aggregated throughput of local set requests per second for 6, 18, 30,
42 concurrently running services.

D. Resilience and Energy Efficiency

Separating service logic and state (section II-J) makes data
available even for offline services. The VSL’s immutability of
data items, and the naming scheme (section II-E) facilitate
caching. We are currently looking at the effects of caching
data items at the destination KAs (section II-G).

Service external storage and distributed caching enhance the
availability of data, resulting in less data transfers. This in-
creases the resilience, performance and scalability. In addition,
it can reduce the energy consumption.

E. Security

The separation of service logic and service state (sec-
tion II-J) enables implementing security fully within the VSL
(section II-K). The result is security-by-design over the entire
data life-cycle from the producer to the consumer [8], [15].

IV. RELATED WORK

The VSL is an inter-service communication overlay that
provides full data management. It offers services a data-
centric abstraction using get/ set, publish/ subscribe, and
stream connections. For service developers it behaves like an
Information Centric Network (ICN). Therefore, ICN principles
are highly relevant for us. The authors of [23] give an overview
on properties of different ICN proposals.

The ICN and VSL system models consist of distributed
nodes that route requests and can cache data. Most ICN
proposals target a clean slate architecture [1], [24], [25]. Some
co-existence to IP via overlays [26], [27]. For retrofitting
to existing infrastructures, we consider the overlay approach
more promising. Still we fully decouple the service we offer
from the used IP substrate, also supporting clean slates.

Service model: ICN data caching often assumes static
producer-consumer locations. There, on-path caching is suit-
able [1], [24]. Others use context clusters for data distribution
[28], [29]. Dynamically spawning and moving IoT services
result in more complex communication patterns [16].

ICN API access happens via publish-subscribe [1], [25],
[28] and get/ set [26], [27]. In addition, we offer Virtual Nodes.
The ICN data structuring is typically key-value [24]. Seman-
tically richer proposals use fixed data object structures [26].
The authors of [25] propose using the Resource Description
Framework (RDF). We use key value pairs with some fixed
attributes like access modifiers, time stamps, and version num-
bers. Via our type-based search and its dynamic extensibility
we achieve RDF-comparable expressiveness at significantly
reduced complexity [19]. Versioning: For representing data
items that change over time, [25] propose links that point to
the newest data version. We also use this scheme.

Naming: ICNs typically use flat name spaces [1], [24],
[26]. We use flat naming for our source KAs. Within a
KA’s name space we use hierarchical names for representing
our structured data. Routing: ICN addresses data not hosts.
Locating data happens on-path, using strategies like request
flooding [1], [24], or via off-path lookups [1], [25], [26],
[30]. We use our KA-local P2P overlay/ underlay address
resolution. Caching: ICNs typically cache on-path [1], [23],
[24], [26], [30]. Some solutions also enable off-path caching
[25], [26]. For IoT communication relationships there is no
clearly winning strategy. It depends on the installed services
and conditions in a space. However, we plan to add both
strategies to the KAs for increasing resilience [20].

ICN Name Discovery typically uses external directories
[1], [25] or system internal attributes [26], [27]. The VSL’s
dynamically extensible semantic lookup is more powerful.

[27] propose in-network processing of routing-related func-
tionality. [31] propose simple functionality such as aggregating
data. Our modular data-centric plug-in concept enables more
flexible on-path processing.

ICN typically provides security using cryptographic hashes
as name parts [24], [29], validating data sources and data
integrity [1], [24]–[26]. We implement security by establishing
the VSL as trusted fully encapsulated system.

[32], [33] use plain ICN for IoT device communication.
This is not our focus as we are in the management domain
not in the control or data plane.

[3], [5], [6] assess ICN-based designs and their possible
uses in the IoT. [34] discuss challenges of creating data-centric
middleware for the IoT. All confirm our identified challenges,
and the fit of our approach. Our architecture is different from
the surveyed ones. It solves identified limitations of ICN,
including semantically rich discovery, and scalability. [5], [6],
[35], [36] survey solutions using data-centric principles for
middleware that like us is implemented as IP overlay. They
are similar to the VSL regarding the overlay aspect, and the
access primitives. They mainly differ in the data modeling and
discovery, caching, and security.

As a representative example, C-Dax [37] is a data-centric
overlay for smart grid data exchange. Similar to us are: the
inter-service communication primitives, the implementation as
overly, using distributed, possibly replicated databases, and
authenticating entities and encrypting communication with
web technologies. Different to us is: limited data modeling
and discovery, no separation of service logic and data, more
complex usability for developers.

Several more-widely deployed solutions partly provide data-
centric features. Data Distribution Service (DDS) [38] is an IP-
based data-centric publish-subscribe architecture for machine-
to-machine (M2M) communication. The VSL is closer to ICN.
Through its separation of service logic and data it offers more
functionality by-design such as security.

Similar to DDS, OPC UA [39], [40] implements a Service-
Oriented Architecture (SOA). Services discovery uses pre-
defined attributes. Our discovery is richer than UPC UA and
DDS. Like DDS, OPC UA lacks data management.

The Constrained Application Protocol (CoAP) [41] is
lightweight HTTP for resource constrained devices as in the
IoT [42]. On top of its request/response-based messaging
model, CoAP supports data caching and resource discovery.
Discovery happens via multicast queries for device self-
descriptions. The VSL information model, and the semantic
discovery are much richer. The data management capabilities
of the VSL go beyond those of CoAP.

MQTT [43] is a lightweight publish subscribe protocol [44].
Clients can subscribe topics at information brokers. Topics are
hierarchically structured, similar to the typing approach of the
VSL. Further semantic descriptions and most important, data
management functionality are not part of MQTT. Security is
also in the domain of the service developers.

V. CONCLUSION

This paper presented the Virtual State Layer (VSL) IoT
middleware. It combines data-centric principles with agents
for managing data on behalf of services. It uses a peer-to-
peer approach for request routing to enable a retrofitting to
existing infrastructures. Through its full encapsulation, using
ICN routing would also be possible.

We propose a full separation of service logic and data
(sections II-A, II-B and II-J), offering the data-centric interface

as Application Programming Interface for reducing the com-
plexity (sections II-A to II-C, II-E to II-G and II-I), explicit
data modeling (section II-D), a distributed, semantically-rich
data item lookup (section II-H), stream connections between
services (section II-C), and security-by-design (section II-K).

Our evaluation shows a high usability, low latency, good
scalability, good resilience and possibly increased energy
efficiency, and security as core principle (section III). We hope
that our work pushes the adoption of the IoT further into the
real world while providing necessary basics such as security.

REFERENCES

[1] T. Koponen, M. Chawla, B.-G. Chun, A. Ermolinskiy, K. H. Kim,
S. Shenker, and I. Stoica, “A data-oriented (and beyond) network archi-
tecture,” ACM SIGCOMM Computer Communication Review, vol. 37,
no. 4, p. 181, 2007.

[2] D. Trossen, A. Sathiaseelan, and J. Ott, “Towards an Information Centric
Network Architecture for Universal Internet Access,” ACM SIGCOMM
Computer Communication Review, vol. 46, no. 1, pp. 44–49, 2016.

[3] C. Fang, H. Yao, Z. Wang, W. Wu, X. Jin, and F. R. Yu, “A survey of
mobile information-centric networking: Research issues and challenges,”
IEEE Comm. Surveys and Tutorials, vol. 20, no. 3, pp. 2353–2371, 2018.

[4] M.-O. Pahl and G. Carle, “The Missing Layer - Virtualizing Smart
Spaces,” in 10th IEEE International Workshop on Managing Ubiqui-
tous Communications and Services 2013 (MUCS 2013, PerCom 2013
adjunct), San Diego, USA, 2013, pp. 139–144.

[5] S. Arshad, M. A. Azam, M. H. Rehmani, and J. Loo, “Recent Advances
in Information-Centric Networking based Internet of Things,” IEEE
COMM. SURVEYS & TUTORIALS, vol. 14, no. 8, pp. 1–34, 2018.

[6] M. Amadeo, C. Campolo, J. Quevedo, D. M. Corujo, A. Iera, R. L.
Aguiar, and A. V. Vasilakos, “Information-Centric Networking for
the Internet of Things: Challenges and Opportunities,” IEEE Network
Magazine, no. April, pp. 92–100, 2016.

[7] E. Borgia, R. Bruno, M. Conti, D. Mascitti, and A. Passarella, “Mobile
edge clouds for Information-Centric IoT services,” in IEEE Symposium
on Computers and Comm., vol. 2016-Augus, 2016, pp. 422–428.

[8] A. Cavoukian, “Privacy by Design: Leadership, Methods, and Results.”
European Data Protection, pp. 175–202, 2013.

[9] M.-O. Pahl, G. Carle, and G. Klinker, “Distributed Smart Space Or-
chestration,” in Network Operations and Management Symposium 2016
(NOMS 2016) - Dissertation Digest, 2016.

[10] D. Lu, D. Huang, A. Walenstein, and D. Medhi, “A Secure Microservice
Framework for IoT,” in 2017 IEEE Symposium on Service-Oriented
System Engineering (SOSE. IEEE, 2017, pp. 9–18.

[11] R. Want, “The Power of Smartphones,” Pervasive Computing, IEEE,
vol. 13, no. 3, pp. 76–79, 2014.

[12] M.-O. Pahl, “Multi-tenant iot service management towards an iot app
economy,” in HotNSM workshop at the International Symposium on
Integrated Network Management (IM), Washington DC, Apr. 2019.

[13] M.-O. Pahl and S. Liebald, “A modular distributed iot service discovery,”
in IM 2019 (), Washington DC, USA, apr 2019.

[14] M.-O. Pahl, “Data-Centric Service-Oriented Management of Things,” in
Integrated Network Management (IM), 2015 IFIP/IEEE International
Symposium on, Ottawa, Canada, May 2015, pp. 484–490.

[15] M.-O. Pahl and L. Donini, “Giving IoT Edge Services an Identity
and Changeable Attributes,” in International Symposium on Integrated
Network Management (IM), Washington DC, USA, apr 2019.

[16] M.-O. Pahl and F.-X. Aubet, “All Eyes on You: Distributed Multi-
Dimensional IoT Microservice Anomaly Detection,” in 2018 14th In-
ternational Conference on Network and Service Management (CNSM)
(CNSM 2018), Rome, Italy, Nov. 2018.

[17] M.-O. Pahl and L. Donini, “Securing IoT Microservices with Certifi-
cates,” in Network Operations & Mgmt. Symposium (NOMS), Apr. 2018.

[18] M.-O. Pahl, F.-X. Aubet, and S. Liebald, “Graph-Based IoT Microser-
vice Security,” in Network Operations and Management Symposium
(NOMS), Apr. 2018.

[19] M.-O. Pahl and G. Carle, “Crowdsourced Context-Modeling as Key
to Future Smart Spaces,” in Network Operations and Management
Symposium 2014 (NOMS 2014), May 2014, pp. 1–8.

[20] M.-O. Pahl, S. Liebald, and L. Wüstrich, “Machine-learning based IoT
Data Caching,” in Integrated Network Mgmt. (IM), 2019 HotNSM at
IFIP/IEEE International Symposium, Washington, USA, Apr. 2019.

[21] M.-O. Pahl and G. Carle, “Taking Smart Space Users into the Develop-
ment Loop: An Architecture for Community Based Software Develop-
ment for Smart Spaces,” in Proceedings of the 2013 ACM Conference
on Pervasive and Ubiquitous Computing Adjunct Publication. New
York, NY, USA: ACM, 2013, pp. 793–800.

[22] R. Grimm, “One.world: Experiences with a Pervasive Computing Ar-
chitecture ,” Pervasive Computing, 2004.

[23] G. Xylomenos, C. N. Ververidis, V. A. Siris, N. Fotiou, C. Tsilopoulos,
X. Vasilakos, K. V. Katsaros, and G. C. Polyzos, “A Survey of
information-centric networking research,” pp. 1024–1049, 2014.

[24] V. Jacobson, D. K. Smetters, J. D. Thornton, M. F. Plass, N. H. Briggs,
and R. L. Braynard, “Networking named content,” in Proceedings of the
5th international conference on Emerging networking experiments and
technologies. ACM, 2009, pp. 1–12.

[25] B. Ahlgren, V. Vercellone, M. D’Ambrosio, M. Marchisio, I. Marsh,
C. Dannewitz, B. Ohlman, K. Pentikousis, O. Strandberg, and R. Rem-
barz, “Design considerations for a network of information,” Proceedings
of CONEXT ’08, no. January, pp. 1–6, 2008.

[26] C. Dannewitz, D. Kutscher, B. Ohlman, S. Farrell, B. Ahlgren, and
H. Karl, “Network of information (NetInf) - An information-centric
networking architecture,” Computer Comm., vol. 36, pp. 721–735, 2013.

[27] D. Raychaudhuri, K. Nagaraja, and A. Venkataramani, “MobilityFirst : A
Robust and Trustworthy Mobility- Centric Architecture for the Future
Internet,” in ACM SIGMobile Mobile Computing and Communication
Review (MC2R), 2012, pp. 1–12.

[28] D. Trossen and G. Parisis, “Designing and realizing an information-
centric internet,” IEEE Comm. Mag., vol. 50, no. 7, pp. 60–67, 2012.

[29] D. Mazières, M. Kaminsky, M. F. Kaashoek, and E. Witchel,
“Separating key management from file system security,” ACM SIGOPS
Operating Systems Review, vol. 34, no. 2, pp. 19–20, 2000. [Online].
Available: http://portal.acm.org/citation.cfm?doid=346152.346183

[30] M. D’Ambrosio, C. Dannewitz, H. Karl, and V. Vercellone, “MDHT,” in
Proceedings of the ACM SIGCOMM workshop on Information-centric
networking - ICN ’11, 2011, p. 7.

[31] O. Ascigil, S. Reñé, G. Xylomenos, I. Psaras, and G. Pavlou, “A
keyword-based ICN-IoT platform,” in Proceedings of the 4th ACM Conf.
on Information-Centric Networking - ICN ’17, 2017, pp. 22–28.

[32] J. Quevedo, D. Corujo, and R. Aguiar, “A case for ICN usage in
IoT environments,” 2014 IEEE Global Communications Conference,
GLOBECOM 2014, no. September 2017, pp. 2770–2775, 2014.

[33] E. Baccelli, C. Mehlis, O. Hahm, T. C. Schmidt, and M. Wählisch,
“Information Centric Networking in the IoT: Experiments with NDN in
the Wild,” in 1st ACM Conf. on Information-Centric Networking, 2014.

[34] A. Lindgren, F. B. Abdesslem, B. Ahlgren, O. Schelén, and A. M.
Malik, “Design choices for the IoT in Information-Centric Networks,”
2016 13th IEEE Annual Consumer Communications and Networking
Conference, CCNC 2016, pp. 882–888, 2016.

[35] S. Chatterjee, “A Survey of Internet of Things (IoT) over Information
Centric Network (ICN),” no. August, pp. 0–18, 2018.

[36] V. Raychoudhury, J. Cao, M. Kumar, and D. Zhang, “Middleware for
pervasive computing: A survey,” Perv. and Mob. Computing, Sep. 2012.

[37] M. Hoefling, F. Heimgaertner, M. Menth, K. V. Katsaros, P. Romano,
L. Zanni, and G. Kamel, “Enabling resilient smart grid communication
over the information-centric C-DAX middleware,” in Proceedings -
International Conference on Networked Systems, NetSys 2015, 2015.

[38] Object Management Group (OMG), “Data Distribution Service (DDS)
Version 1.4,” 2015.

[39] F. Pauker, T. Frühwirth, B. Kittl, and W. Kastner, “A Systematic
Approach to OPC UA Information Model Design,” Procedia CIRP,
vol. 57, pp. 321–326, 2016.

[40] S.-H. Leitner and W. Mahnke, “Opc ua - service-oriented architecture
for industrial applications.” Softwaretechnik-Trends, vol. 26, no. 4, 2006.

[41] C. B. Z. Shelby, K. Hartke, “The Constrained Application Protocol
(CoAP),” Internet Requests for Comments, RFC Editor, RFC 7252,
June 2014. [Online]. Available: https://www.rfc-editor.org/info/rfc7252

[42] C. Gündoğan, P. Kietzmann, M. Lenders, H. Petersen, T. C. Schmidt, and
M. Wählisch, “NDN, CoAP, and MQTT: A Comparative Measurement
Study in the IoT,” vol. 13, 2018.

[43] “mqtt,” https://mqtt.org, undated, [Online; accessed 18-May-2018].
[44] Oasis, “MQTT Version 3.1.1,” OASIS - Advancement of Structured

Information Standards, Standard, dec 2015.

