
A Modular Distributed IoT Service Discovery
Marc-Oliver Pahl and Stefan Liebald

Technical University of Munich
{pahl, liebald}@net.in.tum.de

Abstract—The Internet of Things (IoT) consists of distributed
entities that federate to implement use cases. Driven by its
applications, distributed IoT services federate dynamically to
deliver complex functionality.
A fundamental requirement for service composition is discovery.
The IoT requires a semantically-rich, dynamically extensible, low
complexity service discovery mechanism. Existing mechanisms
fail in delivering this functionality.
We present a distributed modular directory of service properties.
It can be extended at runtime. Combined our so-called search
provider directories form an IoT ontology. With the novel
modularization, our simple directories mash-up to a complex
ontology. We introduce a query federation mechanism. Based on
first-order logic it enables mapping complex semantic queries on
the simple search providers. We evaluate our prototype regarding
latency and usability.

I. INTRODUCTION

The Internet of Things (IoT) consists of distributed entities
that provide functionality such as sensing light intensity, or
opening windows. Different from previous automation sys-
tems, the IoT implements use cases as software services. IoT
services manage other services that either manage hardware
or software [1]. IoT hardware devices are Cyber-Physical
Systems, as they run software to offer certain functionality
such as remote control. All management in the IoT therefore
happens in-between software services.

While early IoT systems implement functionality in mono-
lithic large services, more recently researchers started to look
at modular, Service-Oriented Architectures (SOA) for man-
aging the distributed IoT services [2]–[4]. Modular service-
oriented IoT systems are more flexible as they can dynamically
reorganize to implement different use cases on the same
hardware.

The resulting dynamic linking of services requires com-
patible interfaces. Different solutions for such interfaces have
been proposed, e.g. using a data-centric approach [3], [5]. A
fundamental requirement for dynamic linking of services at
runtime is the availability of suitable discovery mechanisms.

IoT applications that implement use cases are diverse. Once
suitable middleware such as [6] is established, similar to the
smartphone App development the limit of an IoT application
is the imagination of the developer and the locally available
IoT hardware.

Different IoT use cases require different properties to
identify suitable services to mash-up. A maintenance IoT
application may for instance be interested in types, locations,
and ownerships of other services to run queries such as, “give
me all service end points of type light, owned by John

Doe, located in building F”. The discovery mechanisms
typically used in deployed IoT systems such as UPnP [7], or
DNS-based discovery [8] do not offer such a semantically-rich
service discovery.

What should be discoverable does not depend on the
available hardware devices but on the use cases that should
be implemented. Thus, it depends on the software services
running within an IoT site. As software can dynamically
be added to an IoT site, the discovery mechanism has to
be dynamically extensible. Following the above example, if
an advanced management service is deployed that needs to
identify lamps of a certain manufacturer, another predicate for
the discovery, e.g. manufactured by is needed.

While commercially deployed solutions offer basic discov-
ery only, research projects offer semantically richer discovery.
The richest form of discovery is an ontology [9]. The informa-
tion model of an ontology such as the Web Ontology Language
(OWL) model allows expressing diverse metadata of a service.

However, a problem is that ontologies are typically not
extensible at runtime, that they are slow to parse, and that they
are complex. Especially in microservice architectures [2]–[4],
mash-ups of services are frequent. Therefore, the discovery
has to be low latency.

Since the IoT requires a large amount of entities to be mod-
eled, and modeling becomes part of the software development
in data-centric architectures [2], the modeling process has to
be simple. Ideally it can be performed in a crowdsourced way
[5], [10].

In a service-oriented IoT we need a discovery that enables:

• querying semantically-rich service descriptions,
• dynamically extending the service descriptions at runtime

for flexible discovery, and
• discoveries with low latency,
• while having low complexity for crowdsourced use.

Existing mechanisms fail in delivering this functionality (sec-
tion IV). Therefore, we introduce a distributed modular di-
rectory of service properties that can be extended at run-
time (section II). The directory modules are called search
providers. The combined search providers form an ontology.
The modularization enables the use of simple directories to
mash-up a complex ontology. We introduce a query federation
mechanism based on first-order logic that allows mapping
complex search queries to simple distributed search provider
modules. We evaluate our prototype regarding latency and
usability (section III).Preprint from s2labs.org

II. A DYNAMICALLY EXTENSIBLE ONTOLOGY

As written in the introduction, the introduction of an ad-
vanced service discovery mechanism requires the presence of
a suitable middleware for enabling dynamic service coupling at
runtime. Our Virtual State Layer (VSL) middleware provides
such functionality [2], [6].

VSL services couple over a distributed tuple space that
organizes itself. The tuples are accessed mainly via the
methods get, set, and subscribe [2]. The tuple space
is implemented as a peer-to-peer system of distributed, self-
organizing so-called Knowledge Agents (KA).

IoT services connect to a KA on a local or well reachable
compute node. This could be any IoT controller with enough
computational resources [11]. Each KA manages all data for
its directly connected services. It provides access to the data
of any other service that is connected via its responsible KA.

The data-centric VSL design enables implementing interest-
ing properties such as security-by-design [12]–[14]. In [5] we
showed how it is possible to map regular function calls to VSL
data accesses via virtual data nodes. In this work we use this
mechanism to couple the different search provider directories
in our meta search provider.

Each data item in the VSL has a globally
unique address, a Unified Resource Identifier (URI):
vsl://siteID/kaID/serviceID/service/specific/nodes. It consists
of a unique identifier per IoT site, a site-locally unique KA
identifier, a node-locally service identifier, and a subtree that
represents the digital twin of an IoT service that potentially
interfaces an IoT device.

In case hardware is interfaced, the digital twin represents the
functionality of the hardware, e.g. a dimmable light as shown
in listing 1. It contains different properties another service can
interact with, e.g. by setting the isOn to true for switching
the light on [5].

1 <dimmableLight>
2 <isOn type="/derived/boolean" />
3 <intensity type="/derived/intensity" />
4 </dimmableLight>

Listing 1: VSL type ”dimmableLight” data model.

Listing 1 shows the described VSL data model in XML
notation. Each node has a type tag. The information model
[15] provides typing (is-a) and composition (has-a) as ontol-
ogy predicates [9]. The type tag represents the inheritance
relation is-a. The field values refer to type specifications that
are defined in a global directory [5]. The hierarchical structure
of nested data nodes represents the containment relation has-a.
All VSL data nodes together form a Directed Acyclic Graph
(DAG) of nodes [6].

With its so-called Virtual Nodes, the VSL offers a
way to couple services synchronously over the descriptive
blackboard data structures [3]. By accessing its data, e.g.
vsl://siteID/search/type/derived/intensity, a callback function
within the remote service is invoked and can directly return
a value. Parameters can be passed at a data request similar

to calling a dynamic website, e.g. the data type identifiers
“/derived/intensity”.

In this work we use VSL Virtual Nodes to enable a seamless
plug-in of search providers at run time. Depending on the
called address they return for instance a list of service URIs to
a given type. See fig. 2. The resulting dynamic extensibility of
the discovery mechanism is relevant for our proposed approach
as IoT scenarios require dynamic extension of the system.

Though using the VSL as base for illustrating our work,
the only requirement of the target system architecture to im-
plement our methodology is that the entities to be discovered
have a unique identifier that can be returned by a search query.

A. Ontologies

Ontologies are a semantically-rich formalism to describe
entities. An ontology describes the relevant properties of a
domain. The properties-of, and relationships-between entities
can be formally described using ontology languages [9].

In a computer, semantic aspects are typically repre-
sented as triples: 〈subject, predicate, object〉. An example
is, 〈light 23, owned by, JohnDoe〉. As the URIs describe
service resources, they become the subjects of our triples. The
objects depend on the predicates, e.g. room names might be
suitable classifiers for indoor locations.

The following triples describe properties of services:

〈URI, predicate, object〉
〈/a/b/sens23, of-type, light〉
〈/a/b/sens23, located-in, livingRoom〉

The available ontology predicates define, which semantic
relationships can be expressed in a system. In classic on-
tologies such predicates are fixed. This is also the case in
widespread network management systems where the informa-
tion models define the predicates. Examples are SNMP MIBs
[16] and NETCONF configurations [17].

Ontologies are optimal for the IoT as they are very ex-
pressive. However, they are complex to use, and slow to
process. Network management information models in contrast
are easy-to-use and fast-to-process but not expressive enough
for the IoT domain [5]. As ontologies are too complex for
crowdsourced mass development, and network management
information models not expressive enough for the IoT domain,
we propose a hybrid of both in the following.

B. Search Provider

In most existing IoT discovery approaches, look-ups are
driven by resource self-descriptions [18]: the existing infras-
tructure of hardware and software exposes certain pre-defined
properties that can be used for service discovery. Different to
classic management scenarios where the required properties
are known at design time, the IoT is driven by the Pervasive
Computing use cases it implements [19]. The emergence of
unforeseen scenarios is an integral part of this domain.

We therefore provide a novel approach for service discovery
in the IoT. Instead of having fixed semantic properties with
the discoverable entities, or in central directories, we propose

searchProvider = { <URI, P, O> }

P = owned by
O = {owner identifier}

location ownership

system-specific

search provider-
specific

search provider-
specific

type

P = located in
O = {geo coordinates,

3d shapes,
names}

P = is of type
O = {type ids,

e.g lamp}

A

Fig. 1: Search providers implementing different predicates and
their object directories.

distributed independent directories that only allow a lookup
for certain semantic predicates and their properties. These
directories are called search providers.

To enable complex queries with multiple predicates that
require requests to multiple search providers, we introduce
a mechanism for automatically federating the queries to the
distributed directories using first order logic. We call this
functionality meta search provider.

Each search provider implements a semantic predicate. In
the example above the predicates are of-type, located-in,
and owned-by. The objects are predicate-specific. Figure 1
shows the three search providers and suitable ontology objects.

The bottom right shows a VSL data model instance. All
VSL data nodes only have the VSL built-in of-type seman-
tic. Additional properties are added by offering a lookup of
the unique node URI using each search provider’s predicates,
and object database. Thus, the context metadata of a data node
is distributed over all search providers.

This modularization brings the advantage that new pred-
icates can simply be added to an IoT site by adding the
corresponding search providers. The costs are potentially
increased latency of queries compared to querying a single
comprehensive directory (section III).

In existing resource-specific approaches, service developers
typically describe limited semantic properties following a tax-
onomy of properties. This happens at a fixed point in time, e.g.
at development time or latest at deployment time. In contrast,
our approach follows a discovery requester-centric approach:
semantic discovery queries are executed by dynamically added
search providers. As the search providers bring a set of
properties, service properties can dynamically be added at any
time, even after a service was started.

Assuming that an infrastructure for service deployment
exists, the installation of new IoT services that have new
discovery requirements can directly trigger the installation of
the corresponding search providers. When installing a service
that deals with location for coupling, e.g. for switching off
lights within a certain geo-spatial area only, a location search
provider can be installed on demand. Consecutively, queries
for located-in become possible.

Search providers encapsulate the entire logic associated
with their implemented predicate. To feed useful data into
the search provider’s object database, in our example the
location provider offers a map-based interface for graphically
positioning IoT services. Offering user friendly interfaces that
can be used by the end-users of a smart space solves the
problem of adding context metadata at runtime without the
need for ontology experts.

At the same time the modularization keeps the complexity
of the data models low. It also facilitates the implementation
of each predicate as its domain of concern is clearly defined
and limited.

We successfully tested our location provider approach
within different environments with different users, showing
that the approach of keeping concerns separate and limiting the
complexity indeed enables even inexperienced users to provide
relevant context to the IoT.

C. Meta Search Provider

The key to the proposed modularization of an IoT site’s
ontology is that each data node (service access point) has a
unique identifier that can be returned with a query. Analog to
relational databases [20], we use the unique data item identifier
to connect the results of different search provider queries. To
enable more complex queries over multiple predicates, such
as the example with the lights and their locations and owners,
we introduce so called meta search providers.

A fundamental concept of the VSL is modularizing func-
tionality to microservices. Their unified interfaces make mash-
ing up services simple. Consequently, it becomes possible to
implement a service for federating queries to any set of search
providers. With the mechanisms for late coupling of the VSL
it becomes even possible to create a generic federation meta
search provider that can federate all kinds of search providers.

For illustrating the approach, we provide a first order logic
meta search provider. It combines search results from different
search providers using first order logic. With the meta search
service developers can query multiple search providers without
having to implement any federation logic. This approach
works as the common denominator of all search providers is
their return value format: All search providers return a set of
VSL service URIs.

Figure 2 illustrates the federation of the two search
providers (A, B) using the logic operator AND. The meta search
provider (C) implements AND by intersecting the two sets of
VSL URIs, the individual search provider queries return.

Queries like the one with the type and the location that
was described in the introduction become possible: get
/search/metaSearch/[(p=of-type, o=light)
AND (p=located-in, o=livingRoom)]. Via the
parameters p for predicate, and o for object, the meta search
provider can determine, which search provider to query.

The predicate of-type is built-in to the VSL KAs. It
is also used to identify instances of other search providers.
Figure 2 shows the VSL type of each search provider on top.
It equals the implemented predicate from the query.

VSL type:
/searchProv…/located-in,

/system/searchProvider

URL: /search/located-in

(virtual node)

DB

VSL type:
/searchProvider/of-type,

/system/searchProvider

URL: /search/of-type

DB

c

a

b

d <presenceDetection/PIR>

</basic/number>

<switches/light, …>
</state/isOn, …>

type:
/searchProvider/metaSearch,

/system/searchProvider

URL: /search/metaSearch

{ }∩{ }={ }

A B

C

(virtual node)

(virtual node)

Fig. 2: Three example VSL search providers.

Using the late binding feature of the VSL, the meta search
provider only has to search for all VSL nodes of type
/searchProvider/located-in in case of the location
search provider. It can then pick any of the resulting VSL
search provider service instance addresses to send its query,
e.g. /[returnedVslUri]/livingRoom.

The encapsulation of the search providers enables imple-
menting a generic divide and conquer strategy for federated
search queries. All search provider interfaces and return values
are identical. The VSL REST interface [21] and the data type
“/system/searchProvider” define the interface. The return value
is a list of VSL URIs.

The meta search provider is fully agnostic of the used search
providers. It simply identifies them using the predicate p and
locates them via the built-in VSL type search. Then it hands
the query object o over to them.

D. Reverse Search

The described approach works, as the additional semantic
attributes that a search provider brings are only required at
discovery time. However, for providing certain services it is
also desired to know for instance the location or ownership of
a data node / service that is interfaced via the VSL.

For this purpose, search providers offer a reverse search.
Instead of passing the objects that determine the criteria for
the forward search that returns the URIs of associated data
nodes, a URI is passed to the reverse search. The result is a list
of objects in the search provider’s database that are associated
with the given URI.

E. Security

Accessing meta data can be security critical. This includes
the exposure of private data such as ownerships and locations.
The VSL implements a role-based access model that grants
access to data nodes only to those requesters that are of a
certain role [12].

The VSL can implement security-by-design as it has
full control over the inter-service communication. As search
provider requests have well known return values, we parse
the resulting URI lists and remove all nodes a requester has
no access to. The same applies to reverse queries, where the
object lists are locally filtered before a query is sent out.

With the described mechanism, the VSL enforces access
control external to the search providers. This is important to
us, as we want to enable third party developers to create search
providers on the one hand, and on the other hand we do not
want to reveal secret knowledge to insider attackers that have
access to the VSL and its search providers.

III. EVALUATION

Based on our Java VSL pilot we discuss the semantic
richness and dynamic extensibility, measure the latency of
federated queries with different amounts of search providers,
and report the results of our qualitative user experiments.

A. Semantic Richness and Dynamic Extensibility

Ontologies are typically described via triples, <Subject,
Predicate, Object> [9], [22], [23]. The VSL data nodes with
their URIs are the subjects. The built-in predicates of the VSL
information model are typing (is-a) and containment (has-a).
They are implemented via of type metadata per node, and
via providing a hierarchical data structure.

The objects of the of type search are the data type
identifiers that are specified by the crowd in a Central Model
Repository (CMR) [5]. The CMR thereby acts as continuously
updated directory for developers to look up which objects they
can program into their type searches.

With the introduced search providers, the VSL data models
can be dynamically extended with more predicates at runtime
(section II). The result is a high level of expressiveness without
introducing the typical complexity of an ontology [9], [22],
[23]. Each search provider only has to deal with one predicate
only, facilitating the use significantly.

As shown in fig. 1, predicates and qualifying objects can
be added via linking search providers to the data nodes. This
implements a modular ontology. Using our modular approach
provides simpler use than a full-blown ontology [23], and the
distributed data can be processed faster.

B. Latency Measurements

The VSL is a distributed system. Data access happens either
locally on the node a service resides on, or on a remote node.
Remote coupling of VSL services has a higher latency than
node-local coupling due to additional processing and network
overhead.

IoT systems can have heterogeneous links, resulting in
different latencies per link. However, there is no standard IoT
setting and therefore, we assume equal latencies between all
compute nodes. We evaluate the latency differences of local
and remote search providers.

We use a GBps connection with standard computers for
the measurement for the same reason: there is no standard
IoT hardware setting. The computers did neither have any
significant CPU, memory, or network load. Therefore, the
results shown in fig. 3 represent the actual latencies of the
operations without significant external limitations.

Our federation meta search provider enables formulating
queries over multiple search providers by combining them with
logical operators. For the evaluation we only use the operator
“AND”. Using other first order logic operators does not make
a relevant computational difference and thereby has similar
execution time.

We compare two strategies for federating queries: a (naive)
approach that resolves all search queries sequentially, and a
second approach that splits each complex query into indepen-
dent sub queries that are resolved in parallel following the
previously described divide and conquer strategy. Listing 2
shows actual VSL code for the sequential case of intersecting
two search providers.
1 List<string> URIs1 = vsl.get("/search/"+

predicate1+"/"+objects1);
2 List<string> URIs2 = vsl.get("/search/"+

predicate2+"/"+objects2);
3 return URIs1.retainAll(URIs2); // AND

Listing 2: Sequentially intersecting two search providers.

For parallel queries we use a thread pool of size 5 for the
different requests. The size is sufficient to always execute all
query part requests in parallel.

One VSL KA overlay node and multiple different search
providers run on each host. During the evaluation we send
search queries from our probing service to the meta search
provider. Our test queries require different amounts of local
or remote search providers.

10
20

40

60

80

100

120

1L 2L 3L 4L 5L 1R 2R 3R 4R 1L1R 2L2RR
e
sp

o
n
se

 T
im

e
 i
n
 M

ill
is

e
co

n
d

s

sequential polling
parallel polling

Fig. 3: Latency with 1-5 (L)ocal and (R)emote directories.

Figure 3 shows the results of different latency measurements
with the median and the 0.25 percentiles. All measurements
were repeated 10000 times. The outliers are those values that
are above 1.5 times the InterQuartile Range.

The yellow area at the bottom shows an artificial latency for
emulating a lookup and local computation. Having identical
processing latency enables focusing on the latencies intro-
duced by the proposed search provider federation.

The first 5 measurements (1L-5L) in the left part of fig. 3
show the results for combining up to 5 search providers
running locally on the same VSL node. As expected the
parallel requests (right, blue) are faster than the sequential
(left, red) for requests to more than one search provider.

As expected, the sequential complex query processing la-
tency grows linearly with the amount of search providers.
For the parallel queries the latency increase is mainly caused
by the computation needed to intersect (AND) the results
(see listing 2), and a small overhead for the threading. This
threading overhead also explains why sequential polling of 1
provider is slightly faster than with parallel polling.

The middle part of fig. 3 (1R-4R) shows the querying search
providers on remote hosts. As expected, the remote access
adds a basic latency and more variance. The steeper increase
for the parallel remote requests is caused by our current VSL
version having a bottleneck with communication.

Even with the VSL-caused additional latency, complex re-
mote queries involving up to four predicates/ search providers
are carried out in less than 80ms. Typically, about 300ms
are still perceived as realtime. This leaves 220ms for further
application logic when implementing perceived realtime IoT
applications. With local search providers the added latency by
the modularization gets negligible.

The right part of fig. 3 (L1R1,L2R2) shows the latency when
mixing local and remote search providers. As expected, for the
sequential requests, the times of the non-combined local and
remote requests roughly sum up. For the parallel requests the
remote providers dominate the resulting latency.

Overall the plots show that the approach has very low
latencies and is therefore well suitable for IoT operations that
appear realtime to the user. Compared to the state of the art
with 450-600ms [24] our results are much better. At the same
time our approach allows much more complex queries.

Our latency compares well with standard UDDI with 163ms
[25] that has less semantic expression than our approach.
OWL-S+UDDI has comparable semantic expression but is
much slower with latencies above 1000ms [25]. This is typical
for ontology-based approaches. The evaluation shows that our
modular approach meets the latency requirements of the IoT
while providing its required semantic expressiveness.

C. Low Programming Complexity

A continuous evaluation using qualitative questionnaires
with more than 100 student testers confirms a very good us-
ability. Quantitative task time measurements for the modeling
work confirms this. In literature the values for implementing
complex IoT tasks in particular [26] and for the work with
ontologies [9], [22] are significantly higher.

The qualitative evaluation shows that our approach is well
usable and overcomes the complexity of ontologies while
providing comparable expressiveness.

IV. RELATED WORK

Our work differs from classic discovery approaches such
as UPnP [7] or DNS-based approaches [8]. Those are well
suitable for connecting resource constraint devices but do not
match the required semantic richness of the IoT.

Service-oriented mechanisms such as UDDI are not suitable
for our requirements (Sec. I) either, as they are not extensible
with predicates at runtime.

Our solution implements a modular ontology that can be
extended at runtime. As we use a data-centric service cou-
pling approach via the VSL middleware, discovering services
equals discovering data (or devices) [2], [6]. Therefore, service
discovery becomes querying the VSL ontology.

With its high semantic expressiveness, our solutions com-
pares directly with ontologies such as OWL. Classic ontologies
are more complex to use, and slower to process [9], [22], [23].
Our solution is simpler and faster as section III shows.

From its target, enabling service data discovery, and im-
plementation as distributed directories, our work is closer
to service discovery mechanisms. Different surveys give an
overview regarding IoT service and data discovery [27], [28].

With discovery related state of the art we share the view
that semantic service discovery today is a key challenge for
the IoT. With some state of the art we also share the need for
distributed implementation for offering higher scalability and
performance.

None of the related works sees directories/ search providers
as regular services that can be installed at runtime. Rather
they are seen as special platform features. Our approach
is more developer-friendly. It can implement more complex
functionality than approaches using fixed service properties.

In [29] the authors describe a semantic discovery based on
an ontology. In contrast to us, their approach is centralized.
Using the Web Ontology Language (OWL) makes their ap-
proach more complex for developers and less extensible.

The authors of [24] propose a centralized repository for
service configurations. Such configurations can be searched
and return the URI of services matching the search criteria.
The proposal stays very vague. We want to avoid a single
repository for performance and scalability reasons.

The works [30], [31] propose using a DHT for storing
metadata to services. Different to our approach, using a DHT
requires implementing the query logic in all peers. Our system
is more flexible as it can be updated with new search predicates
by simply plugging in search providers at any peer.

The COnstrained Application Protocol (COAP) [18] imple-
ments directory functionality distributed on each node. Limited
requests can be sent to a node to discover its semantic offer-
ings. Like the DHT approaches, this requires implementing
the functionality in each node.

[32] present an approach for federating multiple Webservice
Universal Description, Discovery, and Integration (UDDI)
directories. Their purpose is to increase the results and not
to enrich the search semantics. In contrast to our solution the
search semantics are fixed.

Several works provide solutions for fuzzy discovery to
services best matching search criteria such as Quality of
Service (QoS) parameters [33], [34].

The approach presented in [35] offers search in the Web
of Things (WoT). Their “search semantics” could be used
in our meta search providers to enable more powerful search
federations than first order logic. They also offer extensibility
in that sense that future predicates can be added to the
discovery logic. Their approach is different from ours as
the resource descriptions with the WoT are distributed and
attached to the resources. Our mapping between search terms,
predicates, and service URIs happens locally within the search
providers, enabling a faster search. Federating the searches
locally, our approach is also has a clear termination.

Different works propose introducing directories. The closest
is [36]. The authors generally describe the functionality of
semantic catalogs that enable searching for data items with
unique URIs. Like us, they propose a modular a modular
design and search combinations with intersections and unions.
However, the use of the Resource Description Framework
(RDF) makes their implementation more complex than ours.
Our prototype should be compliant with their high-level spec-
ification, supporting our design decisions.

V. CONCLUSION

Service discovery is a key challenge of today’s Internet of
Things (IoT). We presented a distributed modular approach
for discovering services using various predicates and search
terms (objects) (section II). By focusing on semantically rich
data discovery our approach complements and extends existing
research and standardization in service discovery.

Our work implements a semantically-rich, dynamically ex-
tensible ontology for IoT systems. The introduced modu-
larization adds little latency, suiting time critical operation
(section III).

Continuing our crowdsourced data modeling work [5], we
consider our approach better understandable and scalable than
monolithic concepts such as the Web Ontology Language
(OWL) while providing a comparable level of expressiveness.
Ontological-wise, our search providers extend the minimalistic
built-in VSL ontology with new predicates and objects.

In contrast to the typical IoT service discovery solutions
[7], [8] our approach is dynamically extensible at run time.
It can implement more complex functionality than existing
approaches that typically use fixed semantics for describing
discoverable service attributes. With the implemented modu-
larity we are more developer friendly and faster than solutions
with expressiveness comparable to a full-blown ontology.

Another major advantage of our approach is that it enables
adding attributes to services a posteriori at runtime. Typically
used discovery concepts requires defining the discovery pa-
rameters at development time or latest at deployment time.
Our approach fits the requirement of the dynamically changing
IoT and its applications better.

We see our work as significant contribution towards over-
coming the inherent complexity of today’s IoT.

ACKNOWLEDGMENT

This research has been supported by the German Federal
Ministry of Economic Affairs and Energy (BMWI) project
DECENT (0350024A) and the German-French Academy for
the Industry of the Future project SCHEIF.

REFERENCES

[1] M.-O. Pahl and G. Carle, “The Missing Layer - Virtualizing Smart
Spaces,” in 10th IEEE International Workshop on Managing Ubiqui-
tous Communications and Services 2013 (MUCS 2013, PerCom 2013
adjunct), San Diego, USA, 2013, pp. 139–144.

[2] M.-O. Pahl, G. Carle, and G. Klinker, “Distributed Smart Space Or-
chestration,” in Network Operations and Management Symposium 2016
(NOMS 2016) - Dissertation Digest, 2016.

[3] M.-O. Pahl, “Data-Centric Service-Oriented Management of Things,” in
Integrated Network Management (IM), 2015 IFIP/IEEE International
Symposium on, Ottawa, Canada, May 2015, pp. 484–490.

[4] D. Lu, D. Huang, A. Walenstein, and D. Medhi, “A Secure Microservice
Framework for IoT,” in 2017 IEEE Symposium on Service-Oriented
System Engineering (SOSE. IEEE, 2017, pp. 9–18.

[5] M.-O. Pahl and G. Carle, “Crowdsourced Context-Modeling as Key
to Future Smart Spaces,” in Network Operations and Management
Symposium 2014 (NOMS 2014), May 2014, pp. 1–8.

[6] M.-O. Pahl and S. Liebald, “Designing a Data-Centric internet of things,”
in 2019 International Conference on Networked Systems (NetSys) (Net-
Sys’19), Garching b. München, Germany, Mar. 2019.

[7] M. Boucadair, R. Penno, and D. Wing, “Universal Plug and Play
(UPnP) Internet Gateway Device - Port Control Protocol Interworking
Function (IGD-PCP IWF),” RFC 6970, Jul. 2013. [Online]. Available:
https://rfc-editor.org/rfc/rfc6970.txt

[8] S. Cheshire and M. Krochmal, “DNS-Based Service Discovery,”
RFC 6763, Feb. 2013. [Online]. Available: https://rfc-
editor.org/rfc/rfc6763.txt

[9] U. Aßmann, S. Zschaler, and G. Wagner, “Ontologies, Meta-models, and
the Model-Driven Paradigm,” in Ontologies for Software Engineering
and Technology, C. Calero, F. Ruiz, and M. Piattini, Eds. Berlin
Heidelberg: Springer, 2006, pp. 249–273.

[10] M.-O. Pahl and G. Carle, “Taking Smart Space Users into the Develop-
ment Loop,” in Proceedings of the 2013 ACM Conference on Pervasive
and Ubiquitous Computing Adjunct Publication. New York, NY, USA:
ACM, 2013, pp. 793–800.

[11] R. Want, “When Cell Phones Become Computers,” Pervasive Comput-
ing, IEEE, vol. 8, no. 2, pp. 2–5, 2009.

[12] M.-O. Pahl and L. Donini, “Giving iot edge services an identity
and changeable attributes,” in International Symposium on Integrated
Network Management (IM), Washington DC, USA, Apr. 2019.

[13] ——, “Securing IoT Microservices with Certificates,” in Network Op-
erations and Management Symposium (NOMS), Apr. 2018.

[14] M.-O. Pahl and F.-X. Aubet, “All eyes on you: Distributed Multi-
Dimensional IoT microservice anomaly detection,” in 2018 14th In-
ternational Conference on Network and Service Management (CNSM)
(CNSM 2018), Rome, Italy, Nov. 2018.

[15] A. Pras and J. Schoenwaelder, “On the Difference between
Information Models and Data Models,” RFC 3444 (Informational),
Internet Engineering Task Force, Jan. 2003. [Online]. Available:
http://www.ietf.org/rfc/rfc3444.txt

[16] J. Case, M. Fedor, M. Schoffstall, and J. Davin, “Simple
Network Management Protocol (SNMP),” RFC 1157 (Historic),
Internet Engineering Task Force, May 1990. [Online]. Available:
http://www.ietf.org/rfc/rfc1157.txt

[17] R. Enns, M. Bjorklund, J. Schoenwaelder, and A. Bierman, “Network
Configuration Protocol (NETCONF),” RFC 6241 (Proposed Standard),
Internet Engineering Task Force, Jun. 2011. [Online]. Available:
http://www.ietf.org/rfc/rfc6241.txt

[18] Z. Shelby, K. Hartke, and C. Bormann, “The Constrained Application
Protocol (CoAP),” RFC 7252, Jun. 2014. [Online]. Available:
https://rfc-editor.org/rfc/rfc7252.txt

[19] M. Weiser, “The Computer for the 21st Century,” Scientific American,
vol. 265, no. 3, pp. 94–104, Sep. 1991.

[20] E. F. Codd, “A Relational Model of Data for Large Shared Data
Banks,” Commun. ACM, vol. 13, no. 6, pp. 377–387, Jun. 1970.
[Online]. Available: http://doi.acm.org/10.1145/362384.362685

[21] R. Fielding, “Principled design of the modern Web architecture,” ACM
Transactions on Internet Technology, vol. 2, 2002.

[22] I. Horrocks, P. F. Patel-Schneider, and F. van Harmelen, “From SHIQ
and RDF to OWL: the making of a Web Ontology Language,” Web
Semantics: Science, Services and Agents on the World Wide Web, vol. 1,
no. 1, pp. 7–26, Dec. 2003.

[23] M.-O. Pahl, “Distributed Smart Space Orchestration,” Ph.D. dissertation,
Technische Universität München, München, Jun. 2014.

[24] S. K. Datta and C. Bonnet, “Search engine based resource discovery
framework for Internet of Things.” GCCE, 2015.

[25] N. Srinivasan, M. Paolucci, and K. Sycara, “Semantic web service
discovery in the owl-s ide,” in Proceedings of the 39th Annual Hawaii
International Conference on System Sciences (HICSS’06), vol. 6, Jan
2006, pp. 109b–109b.

[26] R. Grimm, J. Davis, B. Hendrickson, E. Lemar, A. Macbeth, S. Swanson,
T. Anderson, B. Bershad, G. Borriello, S. Gribble, and D. Wetherall,
“Systems Directions for Pervasive Computing,” in Proceedings of the
Eighth Workshop on Hot Topics in Operating Systems, May 2001, pp.
147–151.

[27] A. Bröring, S. K. Datta, and C. Bonnet, “A Categorization of Discovery
Technologies for the Internet of Things,” 6th International Conference
on the Internet of Things, 2016.

[28] S. K. Datta, R. P. F. Da Costa, and C. Bonnet, “Resource discovery in
Internet of Things - Current trends and future standardization aspects.”
WF-IoT, 2015.

[29] C. H. Y. C. H. Yun, Y. W. L. Y. W. Lee, and H. S. J. H. S. Jung,
“An evaluation of semantic service discovery of a U-city middleware,”
Advanced Communication Technology (ICACT), 2010 The 12th Interna-
tional Conference on, vol. 1, pp. 3–6, 2010.

[30] S. Cirani, L. Davoli, G. Ferrari, R. Léone, P. Medagliani, M. Picone,
and L. Veltri, “A Scalable and Self-Configuring Architecture for Service
Discovery in the Internet of Things.” IEEE Internet of Things Journal,
2014.

[31] S. Cirani and L. Veltri, “Implementation of a framework for a DHT-
based distributed location service,” SoftCom 2008: 16th International
Conference on Software, Telecommuncations and Computer Networks,
pp. 279–283, 2008.

[32] P. Rompothong and T. Senivongse, “A query federation of UDDI
registries.” ISICT, 2003.

[33] S. B. Mokhtar, D. Preuveneers, N. Georgantas, S. B. Mokhtar, D. Preuve-
neers, N. Georgantas, and Y. Berbers, “EASY : Efficient semAntic
Service discoverY in pervasive computing environments with QoS and
context support Yolande Berbers To cite this version : EASY : E fficient
Sem A ntic S ervice Discover Y in Pervasive Computing Environments
with QoS and Context S,” 2009.

[34] L.-H. Vu, M. Hauswirth, and K. Aberer, “Towards p2p-
based semantic web service discovery with qos support,” in
Proceedings of Workshop on Business Processes and Services BPS,
vol. 3812, no. 507483, 2006, pp. 18–31. [Online]. Available:
http://www.springerlink.com/index/q211622119212541.pdf

[35] S. Mayer and D. Guinard, “An extensible discovery service for smart
things.” WoT, 2011.

[36] BSI PAS 212, “Automatic resource discovery for the Internet of Things
– Specification Publishing and copyright information,” no. 1, 2016.
[Online]. Available: https://shop.bsigroup.com/upload/276605/PAS212-
corr.pdf

