
Giving IoT Services an
Identity and Changeable Attributes

Marc-Oliver Pahl and Lorenzo Donini
Technical University of Munich
{pahl,lorenzo.donini}@tum.de

Abstract—The Internet of Things (IoT) pervades our sur-
roundings. It softwarizes our physical environments. Software
controls devices that interface their physical environments. The
IoT is often privacy, safety, and security critical. Consequently,
it requires adequate mechanisms for securing its services. For
reasons such as heterogeneity, complexity, and lack of deployment
there is little research on IoT service security.
Our work creates a base for IoT service security. We give
IoT services secure identities and attributes. Using site-local
X.509v3 certificates with short lifetimes, we show how service
attributes can securely be changed at runtime. This enables
enforcing security policies even on distributed, loosely coupled
IoT nodes. Our central mechanisms are pinning certificates
to service executables, and autonomously managing the short
certificate lifetimes. We assess the resulting renewal traffic and
power consumption.

Index Terms—IoT, security, certificates, x.509, microservices,
autonomous service management, unattended nodes, metadata

I. INTRODUCTION

Internet of Things (IoT) devices pervade our environments.
In contrast to earlier distributed systems, IoT devices not only
offer compute power but typically also access to their physical
environment via sensors and actuators.

Attacking IoT devices is attractive. First, the IoT is a
massively distributed resource. The massive deployment of
similar devices makes device-type-specific attacks attractive.
The partially standardized interfaces, e.g. REST, facilitate
attacks. When taking many IoT devices together, they become
the perfect tool for attacks such as Distributed Denial of
Service (DDoS) as the Mirai botnet showed [1]. With the
expected increase in compute power [2], preventing unwanted
access to IoT devices becomes even more relevant.

A second reason for attacks lays in the Cyber-Physical
dimension: IoT devices often continuously collect privacy-
critical data about their environments, e.g. “when am I home
and how long do I stay in the bathroom”. In addition, via
their actuators they enable making their environment uncom-
fortable, e.g. very cold, or even hostile, e.g. robot arms in a
factory that hunt workers in their reach. The Stuxnet attack
pointed in that direction already [3], [4].

Unwanted access to privacy-critical data, and unintended
control of devices become even more interesting when the for-
merly isolated IoT entities get connected. There are promising
proposals for such joint orchestration, often coming from the
Pervasive Computing domain [5], [6]. More recently, different
groups proposed realizing IoT scenarios by composing so-

called microservices that act as building block, providing small
functionality such as unified access to an IoT device [7]–[10].

A central insight when analyzing the IoT is that it consists
of communicating software services. Each IoT device runs a
service that offers a remote-control interface. So-called con-
trollers run other services that implement joint orchestration of
the devices, e.g. for realizing a climate control. The (micro-)
service-oriented approaches require even more services for
implementing IoT scenarios. Consequently, securing the IoT
means securing its services.

Securing the IoT is essential [11], [12]. However, there
is almost no IoT service-security research yet. This is not
surprising due to the heterogeneity and distribution of the IoT,
and due to the missing of a common middleware. However,
security cannot be added to systems later. It has to be an
integral part of IoT middleware [13]. Therefore, we consider
it the right time for investigating, how to secure IoT services
and their metadata?

Fundamental requirements for securing IoT services are
secure identities for authentication, and secure metadata as
base for different mechanisms such as authorization. We show
how certificates help giving services an identity and secure
attributes. To reflect the dynamic, distributed nature of the IoT,
we show how the securely added attributes can be changed at
runtime, enforcing security policies even on distributed loosely
coupled IoT nodes.

Our solution is based on pinning X.509v3 certificates to
service executables, and autonomously managing short cer-
tificate lifetimes [14]. We extend the classic Public-Key In-
frastructure (PKI) with decentralized Certification Authorities
(CA) that make our solution scale. We autonomously manage
the certificates to make the complexity manageable. We assess
the renewal traffic and power consumption resulting from our
short life-time certificates.

Our design protects services against diverse attacks by
securing the runtimes, metadata, and –with the help of the used
middleware– inter-service communication throughout the en-
tire service lifecycle; protecting against: node impersonation,
eavesdropping, man-in-the-middle attacks, sybil attack, unau-
thorized communication, unauthorized code changes including
code injection, and Denial of Service (DoS).

The paper starts with an overview on the most relevant state
of the art (section II). Section III introduces the IoT setting
we use for illustrating our solution. We introduce our security
methodology in section IV. Section V evaluates the resulting
network traffic, CPU load, and energy consumption.Preprint from s2labs.org



II. RELATED WORK

In [15] we presented a black box approach for modeling
service behavior and using the resulting models for firewalling
bidirectional service access. This is relevant for securing
services we do not have any control of, e.g. vendor-proprietary
software stacks running on IoT devices.

This paper is complementary by providing security for
services that are built to interact with an IoT middleware
[7]. Our setting (section III) therefore resembles classic soft-
ware distribution frameworks. Common software distribution
frameworks for PCs or smartphones are Ubuntu Core [16] for
deploying services to computers, and Google Android Play
Store [17] and Apple App Store [18], [19] for smartphones.
All three examples deploy software to single host systems
with user interfaces. In contrast, we target distributed systems
of unattended nodes. Consequently, in addition to their chal-
lenges we have to enable trust between the distributed loosely
connected compute nodes forming our IoT systems.

Table I compares relevant features of the existing service
management solutions with our proposed solution. All use
asymmetric cryptography for signing data, providing a secure
identity and integrity.

App signature Signed by the 
store (GPG)

Self-signed 
APK

Apple-issued 
certificate

Signed by dev, 
store and site

Integrity check Before 
installation

Before 
installation At launch time Periodically

Service distr. Store -> Device Store -> Device Store -> Device Store -> SLSM 
-> NLSM(s)

Cert. renewal No No No Yes

Target platform
Any device 

running Ubuntu 
Core

Android 
smartphone

iOS 
smartphone

Any device 
capable of 

running Java

proposed

Table I
Feature comparison to widely deployed service distribution solutions.

Different to PCs or smartphones, Things do not form a
trusted system. Also, IoT services typically run for a long
time. Integrity checks of the executable at installation time
are not sufficient. Our periodic checks provide better security.

Like us, some solutions use certificates to secure services
in distributed systems. Some use local Certificate Author-
ities (CAs) like us but for different purposes. Others use
Certificate Revocation Lists (CRLs) for change-propagation,
making them less disruption tolerant than us. The following
solutions address authentication between distributed IoT nodes
but not service integrity and metadata protection. Like us,
Panwar and Kumar [20] introduce local CAs to eliminate
pre-shared keys on IoT devices. They target low-power IoT
devices communicating using CoAP and DTLS. They show
that certificates can well be used in constraint environments.

Similarly, Kim et al. [21] present a local authorization
mechanism, leveraging a dedicated “Auth node” (similar to
a CA) to distribute session keys to other nodes. They target
protecting communication channels between heterogeneous
IoT devices. The scalability problem in this case is solved
by allowing multiple distributed synchronized CAs.

Site

Cloud

IoT 
space

IoT 
space

IoT 
space

IoT 
space

IoT 
spaceIoT 

space

Store
D

D

Developers
Users

Edge
IoT setting

Internet

Fig. 1. Distributed developers and locally-distributed compute nodes.

Finally, some works propose short lifetime certificates for
other purposes than securing services. Here, concerns exist
towards real world deployments including scalability and
performance. Micali [22] computes the effort of renewing
all Internet certificates frequently. His conclusion is that the
traffic and computational effort are both significant. We do not
face this problem as we issue our short-lifetime certificates
only locally, resulting in low latency and better load distribu-
tion. Micali proposes optimized Certificate Revocation Lists
(CRLs). So do Naor and Nissim [23]. Contrary to us, such
centralized approaches are not tolerant to network disruptions.

Rivest proposed short renewal cycles already in 1998 [14]
to make CRLs obsolete. Back then main problems were that
there was no suitable way to renew certificates frequently, and
that such an architecture does not scale throughout the Internet.

Topalovic et al. [24] focus on browser-based certificate
revocation. They reaffirm the concept of short-lived certificates
to mitigate damages caused by certificate compromise as well
as the complexity introduced by certificate revocation.

To overcome CRLs and solve the problem of scalability, we
introduce autonomous certificate renewal and use it to renew
certificates only locally within an IoT site. Our first ideas were
well received as a poster at NOMS 2018 [25].

III. SETTING

Our security architecture fits for services running on dis-
tributed networked nodes under a common management au-
thority. A service’s life-cycle is (a) development → (b)
distribution → (c) configuration → (d) deployment → (u)
update. Similar to the mobile computing App economy, we
assume distributed developers and central stores for service
distribution [26]. See figs. 1 and 2.

Figure 1 gives an overview on the described setting. On the
left, distributed developers upload their creations to a central
store. It distributes the services to the distributed IoT spaces. In
the space on the top right, the distributed IoT devices running
the services are shown. The assumed compute devices are
regular IoT things, e.g. smart light switches, that will soon
have enough compute power to run services in addition to
their own functionality [2]. In the figure, the IoT sites are
locally managed. However, our architecture does not make
assumptions on the location of the entities.



We developed the presented solution as part of our Dis-
tributed Smart Space Orchestration System (DS2OS) [27]. For
coupling IoT services, DS2OS uses a data-centric peer-to-
peer overlay, the Virtual State Layer (VSL) [7], [9], [10]. The
VSL implements data-centric coupling. It manages data for its
connected services and VSL services only communicate over
this structured data [28].

The VSL implements a service-centric data-oriented IoT
management [7]. The realization of complex IoT scenarios
happens via mashing-up several microservices. An example is
connecting a Gateway service to a thermometer service with
an Orchestration logic services, and another Gateway service
towards a valve in order to implement a room climate con-
troller. A successful deployment of a (micro-) service-oriented
architecture requires autonomous management to cope with
the complexity and the often-missing expertise.

The VSL enables publish-subscribe and push/ pull com-
munication [7], [9]. It also provides stream communication,
and data-centric remote function calls [29]. Key features are
semantically rich service discovery [28], [30], and the dynamic
binding of services at run time [7]. The VSL uses Transport
Layer Security (TLS) [31]. Therefore, we use the introduced
X.509 certificates [32] for securing these channels. In addition,
the VSL implements role-based access control [33].

Figure 2 gives an overview on the described service cou-
pling within an IoT site. The peer-to-peer overlay is spanned
by so-called Knowledge Agents (KA). Each service connects
to its nearest KA to get access to the overlay. VSL services
are labeled srv, NLSM, SLCA, and SLSM in the figure.

While the VSL can encrypt service communication, it cur-
rently lacks an automated service authentication and metadata
security mechanism. For its operation it requires the availabil-
ity of different service metadata such as interface descriptions,
or access role identifiers. Service executable and metadata
are packed to so-called service packages. The IoT service
authentication and metadata protection mechanisms introduced
in this paper fill this gap.

Within a site we assume a hierarchical service management
[27]. Each node runs a Node-Local Service Manager (NLSM)
that manages all node-local services. Each site has a Site-
Local Service Manager (SLSM) that interfaces to the Store.
It makes site local optimizations regarding service placement,
and it offers the management user interface.

As shown in fig. 2, we assume distributed IoT compute
nodes. Each KA runs on a different node. The IoT has het-
erogeneous and possibly unreliable network links. Therefore,
a requirement to our security solution is that it runs fully
distributed. Security properties must be verified node-locally.

IV. SERVICE SECURITY ARCHITECTURE

Through a service’s life (section III) our solution enables
• securing service integrity and metadata integrity,
• authenticating developers,
• authenticating the store and validating its operation,
• providing services with a cryptographic identifier and

proving their belonging to an IoT site,

• dynamic changes to the secured metadata, and
• fully distributed authorization that tolerates communica-

tion delays and network connectivity disruptions.
Figure 2 shows the lifecycle of a service from the devel-

opment on the right over the distribution via a global store
to the deployment and update on the left (section III). On
the bottom right in the legend a service package is shown. It
gets distributed into IoT sites and deployed to one or multiple
site-local computing nodes. In the following, the identifiers in
parentheses “(a)” refer to fig. 2.

A. Introducing Certificates

The bottom right shows the container for DS2OS services,
the service package (section III). It consists of (1) the service
executable and its (2) metadata. For securing it we introduce
multiple certificates (3). One at each authority in the service
life-cycle: at the developer, the store, and the local site.

Our security bases on standard X.509 v3 certificates [32]
with two custom fields:

1) a cryptographic hash over the executable, and
2) a cryptographic hash over the metadata.

Both hashes protect the integrity of the executable and the
metadata. Integrating the hash of the executable pins the cer-
tificate and the metadata to the specific executable, effectively
resulting in the intended secure service identity. It enables
authentication and integrity validation.

Information that has to be exchanged frequently between
communication partners, or that changes during the life-cycle
of a service should be included directly in the certificate
via extensions for the reasons given next. In our pilot we
add a third x.509 extension field that carries the access-role
identifiers. Directly having additional data in the certificate
brings the advantage that this data is always transmitted with
the certificate, e.g. at the TLS handshake. For the VSL access
identifiers this helps as they are needed for all data accesses.

The main reason for having the access IDs in the certificate
and not in the metadata is that these IDs change within
the local site. We want to verify the operations happening
between the developers and the compute node, namely the
store, and the SLSM. Only not changing the metadata keeps
its hash unchanged and verifiable through all certificates.
This implements the desired property to validate the well-
behavior of the participating intermediate processing entities
since changes become obvious via changed or invalid hashes.

Using an established web standard directly enables node
authentication and transport encryption via TLS [31] (e,f).
The resulting confidentiality protects from eavesdropping and
man-in-the-middle attacks. It also ensures data integrity.

B. Three Trust Anchors

We do not use a classic Public-Key Infrastructure (PKI) but
install different trust anchors. An entity’s public key enables
verifying the certificate data [34]. Each of our three certificates
is signed with a different private key. The trust anchors reflect
the different trust levels of the entity relationships.



service package

metadata

store

IoT Site

SLCA

global

cert

KA KA

svc

SLSM svc
svc svc

executable

cert

e

c
s

1

2

3

a
N

LS
M

b

VSL Middleware

fd

KA

KA

SLCA Site-Local Certificate Authority

cert

*LSM {Site,Node}-Local Service Manager

Computing Node

Middleware Interface

Service Certificate

Private Key

Signature

u CA

cert cert
cert

cert cert cert

Z

Fig. 2. Proposed Distributed Self-Managing Security Architecture.

We want to protect the entire service lifecycle. See figs. 1
and 2 (a). The first trust anchor is the service origin: the de-
velopers. Each developer has its own private key and registers
the public counterpart at the store. The developer creates the
service executable, the metadata file including his own public
key and that of the store, and the certificate (a).

The next lifecycle stage is the distribution (b). After validat-
ing it with a developer’s public key, the store creates a copy
of the certificate and signs it with its private key. Copying
the certificate is necessary as X.509 version 3 certificates are
signed exactly once [32]. The signatures validate the integrity
of the certificate data, and prove its origin (authentication).
Now the service package contains the executable, the metadata
file, and the two certificates from the developer and the store.

The store Certificate Authority (CA) becomes our global
trust anchor. Only the store’s public key has to be shared to
local sites, making our solution practically usable and scale
very well. The store’s public key is well-known to connected
developers and IoT sites via side-channel exchange, e.g. local
configuration. Knowing each-others public keys enables mu-
tual authentication and secure data exchange. This is similar
to existing software distribution frameworks (section II).

Via the SLSM, a user can install a service to the IoT site
(b) (section III). Site-locally the SLSM verifies the executable,
and the metadata via the cryptographic hashes in the store
certificate. The distributed IoT sites only need the store’s
public key as trust anchor.

However, we want the sites to securely identify developers
as well. Therefore, the developer ID is part of the metadata file
that is protected via the hash in all certificates. Though only
having the store public key, the identity of the developer can
therefore be validated. Analogue a unique store ID is saved in
the metadata already at the developers. It enables tracking the
store later. In case of problems, the store and the developer
cannot deny their origin to the site (non-repudiation).

Configuration and deployment (c,d) happen within an IoT

site at the SLSM. As presented in section III, we assume
a fully distributed hierarchical service management. The dis-
tributed IoT nodes are per-se not a trusted domain. To create
the necessary trust between compute nodes and services,
we introduce a third trust anchor, a so-called Site-Local
Certification Authority (SLCA).

At configuration, the SLSM makes another copy of the
certificate. Service configuration requires changing additional
certificate data. In our case, the user can change a service’s
access roles (c). The SLCA signs the third, the local certificate
with a site-local key (s). See left of fig. 2.

The site-local SLCA certificates enable all locally running
IoT services to verify each-other’s certificates using the site’s
public key. Sharing the site’s public key locally enables all
distributed IoT nodes to authorize all services. As a desired
consequence, with this check only services that were explicitly
installed through the SLSM are allowed to run.

On deployment (d), the Node-Local Service Manager
(NLSM) verifies the executable and the metadata before exe-
cuting a service. The SLCA’s site-local signature creates the
trust between the distributed IoT nodes.

Each stage of the management architecture verifies the
integrity and authentication of the entire service package (see
fig. 2). Since the IoT compute nodes provide many attack
vectors, and since IoT services can be expected to run for
a long time we propose checking the integrity of the metadata
and the service executable periodically to prevent malicious
tampering, e.g. via side channel attacks that alter data.

For full verification of all intermediate service package
managers (store, SLSM) the developer certificate, the store
certificate, and the site-local certificate are stored in the service
package (see Z in fig. 2). If the SLSM knows the public key
of the developer, e.g. via a directory, it can verify that the
store did not alter the hashes in the certificate. Analogue, the
NLSMs can verify the operation of the SLSM and the store
when knowing the store’s and the developer’s public keys.



A drawback of the added security is that it requires ad-
ditional storage and produces more traffic when transferring
service packages. This might be critical in certain IoT instal-
lations (see section II). It can be omitted at the price of not
being able to verify the entire processing chain.

In case of our setting, where the VSL provides service
discovery and inter-service communication, a service authen-
ticates at the VSL middleware using its certificate. Conse-
quently, only authorized services can communicate locally
[7]. Via the used TLS this communication is always secured.
All parts of the security framework automatically enforce
the security policy: services have to be authenticated and
authorized via their local signature before they are allowed
to run and communicate resulting in security-by-design [13].

C. Enabling Change Propagation

All three, developer, store, and SLSM add newly signed
certificate (copie)s. Each time data can be altered on purpose,
e.g. to change access rights.

As said before, those metadata that are changed on the
service packages’ path from the developer to the computing
node must be part of the certificate to ensure full verification
of the metadata “end-to-end”.

Changing metadata is especially attractive at the local site
(c). In our pilot, developers propose a set of access rights that
are stored as metadata. Site-users can then locally restrict those
rights (c). In our implementation only a subset of access rights
is stored in the site-local certificate.

Metadata cannot only be changed at installation or deploy-
ment time of a service but also while it is running. In case of
a single compute node this is easy as the metadata can simply
be changed for all service instances node-locally.

Our distributed case is more complex. Site-locally, we
introduce short lifetime certificates, enabling service metadata
changes at runtime. In section V we evaluate the effects of the
certificate lifetime on traffic and power consumption.

In case a user changes the metadata of a running service at
the SLSM interface (c), e.g. the access rights, the SLSM tries
to replace the metadata and the certificate at all compute nodes
running the service by contacting the node-local NLSMs. Even
for nodes that do not have connection to the SLSM, metadata
changes are enforced latest one certificate lifetime after the
change. Assuming synchronized node clocks, all certificates
will expire after at most one certificate lifetime, automatically
withdrawing all access rights.

A problem identified by Rivest [14] is the effort for renew-
ing certificates. Therefore, we introduce a local automated
certificate renewal process. Before a certificate expires, the
NLSM contacts the SLSM via a signing request. The SLCA
gets the current metadata from the SLSM, creates a new
certificate, signs it and sends it back to the NLSM that
exchanges it in the service package. Via a hook the new
certificate reauthorizes the VSL communication.

As everything happens site-locally, and as the number of
IoT devices can be expected to be limited, scalability is less
of an issue compared to running such renewals for the entire

Internet (see section II). However, depending on the bandwidth
and reliability of the links, different renewal intervals can make
sense. See section V.

D. Updates

Service updates are straightforward in our solution. A new
version of a service is obtained from the store. Its integrity is
verified on all stages identically to a new service deployment.
The only difference is that the local metadata changes are
directly reflected from the old version in the SLSM when
possible. In case the new version has new metadata the user is
asked before deploying the update to the compute nodes (c).

The service package is transferred to the IoT nodes running
the service and their NLSM starts the replaced executable [27].

V. EVALUATION

We begin the evaluation, assessing the security of our
solution. Then we look at the performance and scalability since
both are major concerns when using short lifetime certificates
(section II). Finally we assess the energy consumption to
reflect that IoT nodes are often resource constraint.

A. Security Evaluation

Our solution protects service executables and their metadata
using certificates with distributed CAs. Following, we briefly
discuss how the security properties are met.

Secure bootstrapping of the VSL prevents node imper-
sonation and sybil attacks. The process equips all services
including KAs, SLSM, SLCA, and NLSMs with the site-local
certificates from the start. It uses the presented methods to
authenticate all VSL KA nodes, ensuring full authentication
of all services and overlay nodes from the start. Later started
services authenticate to the VSL KAs, resulting in authentica-
tion of all services all the time.

We use standard X.509 mechanisms not breaking the prop-
erties of this solution. The VSL secures all data exchange
using TLS with the presented certificates, preventing eaves-
dropping and man-in-the-middle attacks. Together with the
service authentication, it prevents unauthorized communica-
tion and thereby Denial of Service (DoS) attacks. The periodic
checks of the executables prevent unauthorized code changes
including code injection.

B. Performance and Scalability Evaluation Setting

The following evaluation uses our Java VSL-based imple-
mentation [7]. The SLSM, NLSM, and SHE communicate
securely over the VSL REST interface using HTTPs.

The physical testbed consists of five computers with more
resources than required. We do this instead of using resource
constraint devices as we expect IoT devices to be more power-
ful in the future. For the energy and cpu load measurements we
use Raspberry Pis. Our setting is 4 nodes with 20 idle services
and NLSM each, and a node hosting SLSM and SLCA.

Our used key length is 2048bit. It is directly correlated to
the certificate size and therefore the measured traffic. Each
certificate contains 0-3 accessIDs, randomly determined per
service when spawned resulting in 0-60B extra size.



C. Certificate Lifetime vs.Traffic

0

200

400

600

800

1000

1200

1400

1600

1800

0 1000 2000 3000 4000 5000 6000 7000

A
v
e
ra
g
e
T
ra
ffc

(B
y
te
s
/s
)

Certifcate Lifetime (seconds)
Fig. 3. Certificate renewal traffic depending on the certificate lifetime.

For identifying a suitable certificate lifetime we measured
the average traffic in Bytes/s depending on the chosen certifi-
cate lifetime. As expected the traffic decreases the longer the
certificate lifetime is. Fig. 3 shows the results with a random
backoff enabled (see [25]). We identify 3600s=1h as good
compromise between short lifetime and low traffic.

D. Computational Load and Energy Consumption per Node

CPU usage and energy are a key resource in the IoT. For the
purpose of the test, very short certificate lifetimes were used
(5 minutes maximum validity period). Figure 4 shows average
values over 1s intervals from the NLSM and 20 DS2OS
services running on a Raspberry Pi. We see spikes in the
CPU load and the energy consumption where the certificates
get replaced and verified. The measurement shows that the
total CPU load during certificate renewals reaches about 30%,
saturating one core on the Raspberry Pi 3.

0.25

0.3

0.35

0.4

0.45

0.5

0.55

0.6

00:00 03:00 06:00 09:00 12:00 15:00 18:00 21:00 24:00
0

5

10

15

20

25

30

35

40

In
p
u
t
C
u
rr
e
n
t
(A
)

C
P
U
U
s
a
g
e
(%
)

Time

CPU usage
Input Current

Fig. 4. 1s power and CPU averages of NLSM certificate renewals.

When idle, the IoT device draws 270mA. VSL pings and
other low-level periodic mechanisms [7] lead to an increase in
power consumption between 50-100mA. Energy consumption
spikes occur when the NLSM generates a new Certificate
Signing Request and sends it to the SLSM. Cryptographic
operations are currently not hardware-accelerated and fully
executed in software, resulting in up to 500mA.

When multiple certificates need to be renewed at the
same time, an NLSM requests them sequentially, therefore
not exceeding a certain power consumption threshold. I/O

operations to store certificates and verify metadata are slow
on the Raspberry Pi. A full certificate renewal takes 2.5s.

After roughly 18 minutes, we simulated disconnecting a
compute node. As soon as the device is reconnected to the
network, all certificates have expired and need to be renewed.
The sudden increase in traffic and power consumption can be
seen around minute 22 in the plot.

We also measured the SLSM/ SLCA node. It has to serve
all 4 other NLSMs. In our corresponding measurement it is
more often at the shown peak energy consumption of 550mA
and about 35% CPU load.

E. Scalability SLSM
The presented solution targets IoT nodes like single-board

computers and SoCs capable of running Linux, such as
Raspberry Pi, Beaglebone, or Intel Galileo. To prove that
our solution runs without excessively increasing the load on
existing devices, we analyzed how many certificate renewals
per second an SLSM could handle.

Our measurement with a very high continuous amount of
certificate renewal requests revealed that a maximum of 3.5
requests could be handled by the SLSM per second on the
Raspberry Pi. The average processing time was 270 millisec-
onds per request. As the requests become more distributed
over time, the necessity to have a higher request throughput
on the SLSM diminishes in real deployments.

VI. CONCLUSION

We presented a fully distributed self-managing solution for
equipping IoT services with a secure identity and secure
metadata. Our approach covers the entire life cycle of a
service from development over distribution to deployment,
configuration, and update. It enforces its security policies that
only authorized services can run locally, and that metadata
changes are reflected even to disconnected nodes after a
defined time, resulting in security-by design.

The presented solution is applicable to all distributed sys-
tems that are at least part-time connected. Our certificate-based
solution provides integrity verification for service executables
and their metadata. It identifies developers, stores, and sites at
all stages of the hierarchical service management.

The proposed security architecture enables continuous
changes of a service’s metadata. It guarantees that the metadata
of each running service is updated within maximum one cer-
tificate lifetime. If nodes are disconnected their services cannot
run anymore after that time ensuring the highest security level.
The autonomy of our fully local solution fits unattended nodes.
It has a high scalability due to the decentralized operation.

Providing adequate security is a fundamental requirement
for establishing the IoT. Integrity, non-repudiation, and confi-
dentiality are key security properties that our solution provides.
Higher-level security mechanisms such as authorization can
only be deployed when these properties are provided.

Therefore, our work lays the base for implementing ad-
vanced security mechanisms such as access control that can
then implement security and privacy of IoT data. Ideally this
happens by-design.



GLOSSARY

CA Certificate Authority
DS2OS Distributed Smart Space Orchestration System
ID Identifier
KA Knowledge Agent
NLSM Node-Local Service Manager
PKI Public-Key Infrastructure
SLCA Site-Local Certificate Authority
SLSM Site-Local Service Manager
TLS Transport Layer Security
VSL Virtual State Layer

ACKNOWLEDGMENT

This research has been supported by the German Federal
Ministry of Economic Affairs and Energy (BMWi) project DE-
CENT (0350024A), the German Federal Ministry of Education
and Research (BMBF) in the project DecADe (16KIS0538),
and the German-French Academy for the Industry of the
Future project SCHEIF.

REFERENCES

[1] C. Kolias, G. Kambourakis, A. Stavrou, and J. M. Voas, “DDoS in the
IoT - Mirai and Other Botnets.” IEEE Computer, 2017.

[2] R. Want, “When Cell Phones Become Computers,” Pervasive Comput-
ing, IEEE, vol. 8, no. 2, pp. 2–5, 2009.

[3] S. Karnouskos, “Stuxnet worm impact on industrial cyber-physical sys-
tem security,” IECON Proceedings (Industrial Electronics Conference),
pp. 4490–4494, 2011.

[4] D. Kushner, “The real story of stuxnet,” IEEE Spectrum, vol. 50, no. 3,
pp. 48–53, 2013.

[5] M. A. Razzaque, M. Milojevic-Jevric, A. Palade, and S. Cla,
“Middleware for internet of things: A survey,” IEEE Internet of
Things Journal, vol. 3, no. 1, pp. 70–95, 2016. [Online]. Available:
http://ieeexplore.ieee.org/document/7322178/

[6] V. Raychoudhury, J. Cao, M. Kumar, and D. Zhang, “Middleware for
pervasive computing: A survey,” Pervasive and Mobile Computing, Sep.
2012.

[7] M.-O. Pahl and S. Liebald, “Designing a Data-Centric internet of things:
Vsl,” in 2019 International Conference on Networked Systems (NetSys)
(NetSys’19), Garching b. München, Germany, Mar. 2019.

[8] D. Lu, D. Huang, A. Walenstein, and D. Medhi, “A Secure Microservice
Framework for IoT,” in 2017 IEEE Symposium on Service-Oriented
System Engineering (SOSE. IEEE, 2017, pp. 9–18.

[9] M.-O. Pahl, G. Carle, and G. Klinker, “Distributed Smart Space Or-
chestration,” in Network Operations and Management Symposium 2016
(NOMS 2016) - Dissertation Digest, 2016.

[10] M.-O. Pahl and G. Carle, “The Missing Layer - Virtualizing Smart
Spaces,” in 10th IEEE International Workshop on Managing Ubiqui-
tous Communications and Services 2013 (MUCS 2013, PerCom 2013
adjunct), San Diego, USA, 2013, pp. 139–144.

[11] S. Misra, M. Maheswaran, and S. Hashmi, “Security Challenges and
Approaches in Internet of Things,” Security Challenges and Approaches
in Internet of Things, 2017.

[12] G. Strazdins and H. Wang, “Open security and privacy challenges
for the Internet of Things,” in 2015 10th International Conference on
Information, Communications and Signal Processing (ICICS. IEEE,
2015, pp. 1–4.

[13] A. Cavoukian, “Privacy by Design: Leadership, Methods, and Results.”
European Data Protection, pp. 175–202, 2013.

[14] R. L. Rivest, “Can We Eliminate Certificate Revocations Lists?” Finan-
cial Cryptography, 1998.

[15] M.-O. Pahl and F.-X. Aubet, “All eyes on you: Distributed Multi-
Dimensional IoT microservice anomaly detection,” in 2018 14th In-
ternational Conference on Network and Service Management (CNSM)
(CNSM 2018), Rome, Italy, Nov. 2018.

[16] Ubuntu Core 16 - Security, Canonical, 8 2017, version 2.0.0 rc9.
[17] Android security white paper, Google, 5 2015.

[18] F. Cuadrado and J. C. Duenas, “Mobile Application Stores: Success
Factors, Existing Approaches, and Future Developments,” IEEE Com-
munications Magazine, vol. 50, no. 11, pp. 160–167, Nov. 2012.

[19] Apple Incorporated, “IOS Security Guide,” Tech. Rep., May 2016.
[20] M. Panwar and A. Kumar, “Security for IoT: An effective DTLS with

public certificates,” in 2015 International Conference on Advances in
Computer Engineering and Applications (ICACEA). IEEE, 2015, pp.
163–166.

[21] H. Kim, E. Kang, E. A. Lee, and D. Broman, “A Toolkit for Construction
of Authorization Service Infrastructure for the Internet of Things.”
IoTDI, pp. 147–158, 2017.

[22] S. Micali, “Efficient Certificate Revocation,” Cambridge, MA, USA,
Tech. Rep., 1996.

[23] M. Naor and K. Nissim, “Certificate Revocation and Certificate Update.”
USENIX Security Symposium, 1998.

[24] E. Topalovic, B. Saeta, L.-S. Huang, C. Jackson, D. Boneh, and S. ,
“Towards short-lived certificates,” 2012.

[25] M.-O. Pahl and L. Donini, “Securing IoT Microservices with Certifi-
cates,” in Network Operations and Management Symposium (NOMS),
Apr. 2018.

[26] M.-O. Pahl and G. Carle, “Taking Smart Space Users into the Develop-
ment Loop,” in Proceedings of the 2013 ACM Conference on Pervasive
and Ubiquitous Computing Adjunct Publication. New York, NY, USA:
ACM, 2013, pp. 793–800.

[27] M.-O. Pahl, “Multi-tenant iot service management towards an iot app
economy,” in HotNSM workshop at the International Symposium on
Integrated Network Management (IM), Washington DC, Apr. 2019.

[28] M.-O. Pahl and G. Carle, “Crowdsourced Context-Modeling as Key
to Future Smart Spaces,” in Network Operations and Management
Symposium 2014 (NOMS 2014), May 2014, pp. 1–8.

[29] M.-O. Pahl, “Data-Centric Service-Oriented Management of Things,” in
Integrated Network Management (IM), 2015 IFIP/IEEE International
Symposium on, Ottawa, Canada, May 2015, pp. 484–490.

[30] M.-O. Pahl and S. Liebald, “A modular distributed iot service discovery,”
in International Symposium on Integrated Network Management (IM),
Washington DC, USA, Apr. 2019.

[31] E. Rescorla, “The Transport Layer Security (TLS) Protocol Version
1.3,” RFC 8446, Aug. 2018. [Online]. Available: https://rfc-editor.org/
rfc/rfc8446.txt

[32] S. Boeyen, S. Santesson, T. Polk, R. Housley, S. Farrell, and D. Cooper,
“Internet X.509 Public Key Infrastructure Certificate and Certificate
Revocation List (CRL) Profile,” RFC 5280, May 2008. [Online].
Available: https://rfc-editor.org/rfc/rfc5280.txt

[33] R. S. Sandhu, “Role-Based Access Control.” Advances in Computers,
1998.

[34] R. L. Rivest, A. Shamir, and L. Adleman, “A method for obtaining
digital signatures and public-key cryptosystems,” Communications of the
ACM, vol. 21, no. 2, Feb. 1978.


