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Abstract—The Internet of Things (IoT) continuously produces
big amounts of data. Data-centric middleware can therefore help
reducing the complexity when orchestrating distributed Things.
With its heterogeneity and resource limitations, IoT applications
can lack performance, scalability, or resilience. Caching can help
overcoming the limitations.

We are currently working on establishing data caching within
IoT middleware. The paper presents fundamentals of caching,
major challenges, relevant state of the art, and a description of
our current approaches. We show directions of using machine
learning for caching in the IoT.

Index Terms—Data-centric, Internet of Things, caching, ma-
chine learning

I. INTRODUCTION

The Internet of Things (IoT) consists of distributed data
sources and sinks. The interacting components are software
services. They federate dynamically for implementing com-
plex applications such as a heating control [1].

The central element of the IoT is data discovery and
exchange. The availability of data, e.g. from sensors, is crucial
for the operation of the IoT. Missing data can lead to a
decrease in functionality, e.g. when a heating system does not
know the room temperature, it cannot regulate the temperature
suitably. More severe, missing data can also lead to safety, e.g.
smoke detectors, and security threats, e.g. window sensors.

Providing IoT data timely and continuous is a central
challenge. This challenge grows with the IoT’s pervasion
of the world. Timeliness can be affected by slow links and
multiple network hops between services. The continuity can be
affected by link or node failures. Both factors can be affected
by a high rate of concurrent accesses to single data sources.

The IoT is a network of heterogeneous nodes that are
connected over heterogeneous links. Due to the heterogeneity
bottlenecks or even failures happen more likely than in classic,
more homogeneous systems. Bottlenecks impact the perfor-
mance of IoT systems: workflows take longer than expected
as data cannot be exchanged in an ideal way. An example is
pressing a physical light switch and having to wait seconds
until the room gets alighted. Failures impact the resilience
of IoT systems: workflows cannot be executed anymore. An
example is closing the shutters when it gets dark, which
depends on the availability of a light sensor.

Bottlenecks can also emerge from popularity that results in
frequent accesses to certain services. Data access bottlenecks
can therefore also impact the scalability of an IoT system.
Finally, the dynamic access patterns that happen through
the diversity of devices and use cases can affect the energy
efficiency of an IoT system.
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A newer paradigm for orchestrating the IoT is using
reusable microservices to implement scenarios [1], [2]: Com-
plex tasks are divided into multiple reusable microservices that
get dynamically mashed-up at runtime [3], [4]. Data-centric
middleware enables such mash-ups [3]–[5].

All previously identified problems happen through insuffi-
cient availability of IoT data. A suitable mitigation strategy
for them is data caching [6]. Caching is most efficient as a
core building block of the used communication middleware.
We are currently working on this.

In this work, we introduce fundamental caching principles
for the IoT. We detail our current approaches for using ma-
chine learning to improve the cache efficiency. The resulting
increase in performance, resilience, scalability, and energy effi-
ciency can increase the robustness of IoT systems significantly.
This is especially relevant as IoT software systems more
and more replace classic hardware controls, e.g. in heating
systems, or dedicated systems such as alarms.

The failure of IoT systems can therefore have fatal con-
sequences in all domains from private environments over
hospitals to factories. Our work on IoT data caching therefore
contributes to increased security and safety of IoT systems.

Section II introduces challenges of caching algorithms,
putting them in the context of the IoT. Section III presents
relevant state of the art. Section IV introduces our approach
for introducing caching to a data-centric IoT.

II. CACHING STRATEGIES AND CHALLENGES

Caching is utilized since the early days of computing,
mainly for increasing performance [6]. There, memory hierar-
chies with caches enhance the local data access performance.
For distributed systems, caches offer additional benefits. Scal-
ability can be increased by storing data on multiple or faster
nodes. Resilience can be increased by storing data on more or
more reliable nodes [7].

The IoT is a complex distributed system with heterogeneous
compute nodes, links, and data. Still, the fundamental chal-
lenges of caching are equally relevant for it. In this section
we introduce basic principles and challenges of caching.

A fundamental problem with caching is a limited cache size.
In case of the IoT, available storage on a node is limited
mainly for price and energy reasons. Due to their limited
availability, cache resources have to be managed suitably.
Cache management has two main components, the cache
decision and the cache replacement strategy.

Which data should be cached for optimizing a system is
determined by the cache decision strategy. Though it is fun-
damental, there is not much research about caching decision
strategies [8]. Instead, often all data passing through a node
is added to its cache.Preprint from s2labs.org



Cache replacement strategies are needed when the size of
a new data object exceeds the amount of free space left in the
cache. Consequently, content of the cache has to be replaced.
It is desirable to delete items that are least-likely needed again
in the future. As this is usually not known in advance, items
are replaced based on a usage prediction.

For the prediction of the likelihood of future use, different
metrics can be applied. They can be categorized into recency
of access on an item, frequency of access on an item, function
based, and random [9], [10].

Another issue with copies of information is consistency.
Cached data is inconsistent when its source is updated but the
cached copy is not. Such inconsistencies are especially relevant
for the IoT. There, data is distributed, continuously generated,
and often subject to change (e.g. sensor readings). Therefore,
the IoT needs mechanisms to ensure cache consistency.

There are two main cache decision strategies: reactive and
proactive caching. With reactive caching, data is cached after it
was queried. A typical example is a web proxy. With proactive
or predictive caching, data is cached before it is requested. The
base is a prediction on which data is likely requested soon.

An optimal cache always has the requested data cached
when needed. The cache hit ratio then is 100%. The IoT is
a dynamically changing environment. This makes pushing the
cache hit ratio towards 100% especially challenging.

III. STATE OF THE ART

The IoT is a distributed system. Therefore, we identified
Information Centric Networking (ICN) and web caching as
the two most promising technologies.

ICN offers a disruptive (Inter-) networking architecture with
a focus on data. Caching data on each node is a core principle
of ICN [11].Web caching schemes on the other hand are
widely deployed in the Internet since its early days, as they
became required for handling the rapid growth of Internet
resources [12]. The IoT also has to handle large amounts of
data, e.g. periodic sensor readings.

Common to both technologies and the IoT is the focus
on semantically tagged data. In ICN identifiers address data
chunks. In the WWW Unified Resource Identifiers (URI)
take this role. In the IoT, with suitable middleware the same
principles apply [3], [5], [13]–[15]. We believe it is promising
to carry parts of the caching approaches from both, web
caching and ICN, over to the IoT.

For handling the complex, dynamically changing data ex-
change behavior of IoT services, we apply machine learning
on caching. Therefore, we also survey relevant work following
this approach.

Information Centric Networking aims to replacing host-
based routing with content-based routing in the Internet. ICN
assumes a distributed multi-hop architecture. Data is generated
at data sources in the network, e.g. a sensor in an IoT scenario.
It then travels through multiple intermediate hops until it
reaches the data sink. ICN nodes have a content store that
caches data reactively [16], [17].

A multitude of ICN caching approaches have been evaluated
over time, differing in caching decision strategy, cache location
or cache collaboration [18]. These approaches vary from
caching everything to selecting the data that should be cached
based on a calculated likelihood (prediction) for an item [19].

ICN caching often implements on-path caching: the reply
of a request is kept in the local content store to answer similar
requests in the future [16]. Alternatively, off-path caching is
used: dedicated nodes in the network are used for caching
in order to utilize each nodes cache more efficiently and to
reduce redundancy.

An approach that makes use of queries to physically close
devices is proposed in [20]. A history-based popularity index
for data locations is calculated, successfully improving the
deployed caching mechanism. and achieving high cache hit
ratios for popular areas by prefetching data from these regions.

Data-centric IoT systems can also be designed as a peer-
to-peer architectures with autonomously federating nodes [1],
[5]. However, the IoT has specific data characteristics. Often
data chunks are small and update frequently. The IoT is highly
dynamic with frequently changing data sources and sinks.

Especially IoT sensor readings require a high cache recency.
This is relevant for addressing the consistency issue. Some
implementations solve this problem by introducing a time to
live (TTL), indicating how long data from a cache can be used
to answer queries [20].

The authors of [21] present caching in an ICN-based IoT
scenario. Similarly, but without ICN, the authors of [22] look
at sensor networks. Different to us, both look at resource
constraint mobile devices with a focus on energy efficiency.
In addition, they do not employ machine learning.

[10], [23] focus on ICN-specific mechanisms, including
the flooding of an IoT system with information. We do not
consider this aspect of ICN as suitable for the IoT, as it
requires too much resources. Instead we focus on the data-
centric addressing scheme with targeted caching in our work.

An older, but similarly related area for IoT caching are web
caches. Web caching schemes have proven their scalability
[12]. By strategically placing caches between a consumer and
a data source, different goals of caching (i.e. latency reduction,
increase of availability) can be achieved [24], [25].

For Web Caches, schemes utilizing machine learning exist.
Depending on the goal, different approaches have been taken.
Often neural networks improve existing cache replacement
strategies like LRU or LFU [26], [27].

For proactive caching, some approaches propose the use
of log mining in order to detect correlations between data
accesses, and associations between data sources and sinks.
It helps to prefetch data accordingly, improving the Cache
Decision Strategy [28]–[30].

ICN and web caching both deal with annotated data. IoT
middleware can also provide detailed data semantics [15]. In
addition, many IoT applications have recurring data exchange
behavior such as periodic sensor queries. This makes it a
promising domain for caching.



A strength of machine learning is predicting complex
correlations. For learning these correlations, annotated data
is helpful. Therefore we consider combining both, machine
learning and caching, highly promising. We build on the
existing state of the art to improve caching in IoT systems.

IV. APPROACH

Our goal is introducing caching as a central building block
for the IoT. Middleware channels the data exchange between
IoT services. Introducing caching functionality in IoT middle-
ware is therefore promising to reach our goal.

Especially promising is data-centric middleware that does
not only enable data communication between IoT services,
but manages data on behalf of services [5], [14], [31], [32].
For illustrating our approach, we use the data-centric Virtual
State Layer middleware (VSL). It is strong in managing IoT
data [15], and it enables a dynamic discovery [3] and coupling
[4] of IoT services.

In addition, the VSL provides persistent data items. Each
sensor reading has a unique VSL ID. This facilitates caching
as cached items are never incoherent. However, the problem
is only shifted to knowing what is the most recent VSL data
item as it may not have been propagated to a cache yet [5].

The VSL enforces tagging data items with type and func-
tional identifiers [15]. This facilitates the analysis and decorre-
lation of inter-service communication [33], and can be useful
for applying machine learning.

Relevant though not in the focus here, in addition the
VSL provides security mechanisms such as access control
and transport encryption directly in its core [34], [35]. Such
security-by-design [36] is important as the IoT inherently
processes privacy-critical personal data. By including caching
in the VSL, the security mechanisms can directly be used for
data protection and access control of cached data.
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Fig. 1. IoT system with the VSL middleware and data caches.

Figure 1 shows an IoT site with many microservices that
mash-up for implementing complex workflows. A complex
example workflow is an intelligent climate control that or-
chestrates different services on distributed IoT hosts.

The illustration in fig. 1 consists of four IoT compute nodes
(A-D). All nodes run multiple IoT (micro-) services (yellow
on the outside). Each service is connected to the VSL self-
organizing peer-to-peer IoT middleware [1] that handles all
inter-service data exchange [4].

In its current implementation, the VSL stores data only at
the source IoT host. This results in strong consistency, but
can oppose performance, resilience, and scalability (section I).
Therefore, we add caching.

To reduce the dependencies between the IoT nodes, we
install a node-local cache (C) at each IoT host that has enough
resources. It caches data requested by locally running services
on-path. See fig. 1.

The independent nodes only have a local view on the IoT
system. Therefore, we introduce a site-local cache manager
(M). It uses the knowledge about the available resources on
each node and its communication characteristics. The central
cache manager informs all decentralized caches about relevant
site-global data, enabling them to optimize their strategies even
more. This implements off-path caching.

To implement near-optimal caching for the IoT, we are
currently developing and implementing

• different suitable caching strategies,
• a data exchange analyzer that classifies different inter-

service communication settings,
• a chooser that selects the best caching strategy on a per-

service-interaction level,
• an overall cache manager that orchestrates the other com-

ponents taking the restrictions of the local IoT node such
as resources like CPU, storage, and network bandwidth
into account, and

• an IoT-site wide analyzer and optimizer that has a global
view on the entire IoT system and passes partial views
for the local optimizations to the independent nodes.

As novel aspect compared to traditional caching in dis-
tributed systems we introduce machine learning for predicting
the behavior of services’ data exchanges. Machine-to-Machine
(M2M) communication often leads to periodic patterns that
can be detected using machine learning [33]. We use machine
learning in two ways:

1) Choosing a suitable caching strategy per data item
2) Improving the prediction of data accesses
For choosing a suitable replacement strategy per data item

we want to use Deep Learning as a black box technology. We
want to feed the communication endpoint descriptors and the
service IDs into our Neural Network. The output will be a
number that indicates the most suitable replacement strategy
for the data item such as LRF or LFU.

For improving the prediction of data accesses, we want to
use and improve our communication models [33]. The more
detailed we can locally model the future behavior of another



service, the better we can predict its future data accesses.
This knowledge enables us to optimize our cache decision
and replacement strategies.

The decoupling of inter-service communication from an IoT
site instance, the gained models can be exchanged between
local IoT nodes, and globally between sites [33].

For evaluating our approaches, we will compare standard
strategies with our two innovative uses of machine learning.
We will measure the performance, scalability, resilience, and
energy efficiency in different scenarios.

V. CONCLUSION

Introducing caching to the IoT is highly promising. Due
to the characteristics of the IoT it can be expected to have a
significant effect on the performance, scalability, and resilience
of IoT systems. With the VSL IoT middleware we have
context data at hand that provides us with a comfortable base
for complex caching decisions. Our preliminary tests with
the VSL IoT middleware are promising towards a significant
improvement in caching performance.

In this paper we introduced challenges and possible strate-
gies for introducing data caching in the IoT. We started
with the basic caching methodologies (section II), the cache
decision strategy, and the cache replacement strategy. For the
relevant state of the art (section III) we focused on ICN
and web caching. We presented our current and planned
approach towards caching in a data-centric IoT. Finally, we
introduced our planned use of machine learning for choosing
the best caching strategy per data item, and for predicting node
behavior better (section IV).

Through the increased performance, scalability, and re-
silience we hope to make future IoT systems readier for a real-
world use, where timely data availability can be critical for
life-relevant applications such as fire detection or the control of
heavy machinery in Industrial Internet of Things approaches.
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[9] S. Podlipnig and L. Böszörmenyi, “A survey of web cache replacement
strategies,” ACM Computing Surveys, 2003.

[10] M. A. M. Hail, M. Amadeo, A. Molinaro, and S. Fischer, “On the
performance of caching and forwarding in information-centric network-
ing for the iot,” in International Conference on Wired/Wireless Internet
Communication. Springer, 2015.

[11] V. Jacobson, D. K. Smetters, J. D. Thornton, M. F. Plass, N. H. Briggs,
and R. L. Braynard, “Networking named content,” in 5th international
conference on Emerging networking experiments and technologies.
ACM, 2009.

[12] J. Wang, “A survey of web caching schemes for the Internet,” ACM
SIGCOMM Computer Comm. Review, 1999.

[13] M. Amadeo, C. Campolo, J. Quevedo, D. Corujo, A. Molinaro, A. Iera,
R. L. Aguiar, and A. V. Vasilakos, “Information-centric networking for
the internet of things: Challenges and opportunities,” IEEE Netw., 2016.

[14] E. Baccelli, C. Mehlis, O. Hahm, T. C. Schmidt, and M. Wählisch,
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[24] S. Podlipnig and L. Böszörmenyi, “A survey of Web cache replacement
strategies,” ACM Comp. Surveys, 2003.

[25] G. Barish and K. Obraczke, “World wide web caching: Trends and
techniques,” IEEE Comm. magazine, 2000.

[26] H. ElAarag, “Web proxy cache replacement scheme based on backprop-
agation neural network,” in SpringerBriefs in Computer Science, 2013.

[27] W. Tian, B. Choi, and V. V. Phoha, “An adaptive web cache access
predictor using neural network,” in Developments in Applied Artificial
Intelligence. Berlin, Heidelberg: Springer, 2002.

[28] Q. Yang, H. H. Zhang, and T. Li, “Mining web logs for prediction mod-
els in www caching and prefetching,” in 7th ACM SIGKDD international
conf. on Knowledge discovery and data mining. ACM, 2001.

[29] Q. Yang and H. H. Zhang, “Web-log mining for predictive web caching,”
IEEE Transactions on Knowledge and Data Engineering, 2003.

[30] W. Ali, S. M. Shamsuddin, and A. S. Ismail, “A survey of web
caching and prefetching,” in International Journal of Advances in Soft
Computing and its Applications, 2011.

[31] M.-O. Pahl and G. Carle, “The Missing Layer - Virtualizing Smart
Spaces,” in 10th IEEE International Workshop on Managing Ubiquitous
Comm.s and Services (MUCS, PerCom adjunct), San Diego, USA, 2013.

[32] V. Raychoudhury, J. Cao, M. Kumar, and D. Zhang, “Middleware for
pervasive computing: A survey,” Pervasive and Mobile Comp., 2012.

[33] M.-O. Pahl and F.-X. Aubet, “All eyes on you: Distributed Multi-
Dimensional IoT microservice anomaly detection,” in 14th International
Conf. on Network and Service Management (CNSM), Rome, Italy, 2018.

[34] M.-O. Pahl and L. Donini, “Giving iot edge services an identity
and changeable attributes,” in International Symposium on Integrated
Network Management (IM), Washington DC, USA, 2019.

[35] ——, “Securing IoT Microservices with Certificates,” in Network Op-
erations and Management Symposium (NOMS), 2018.

[36] A. Cavoukian, “Privacy by Design: Leadership, Methods, and Results.”
European Data Protection, 2013.


