
Graph-Based IoT Microservice Security
Marc-Oliver Pahl

Technical University of Munich
pahl@net.in.tum.de

François-Xavier Aubet
Technical University of Munich

aubet@net.in.tum.de

Stefan Liebald
Technical University of Munich

liebald@net.in.tum.de

Abstract—The Internet of Things (IoT) can be considered as
Service Oriented Architecture (SOA) of Microservices (µS). The
µSs inherently process data that affects the privacy, safety, and
security of its users. IoT service security is a key challenge. Most
state of the art providing IoT system security is policy based.
We showcase a graph-based access control that runs as module
on IoT nodes, or in the network. Our solution intercepts and
firewalls inter-service communication. It automatically creates a
model of legitimate communication relationships. The model is
interactively updated via a simple-to-understand interface. Our
solution adds inevitable IoT security to existing IoT systems.

Index Terms—IoT, security, passive monitoring, firewall, mi-
croservices, autonomous service management, unattended nodes

I. INTRODUCTION

The Internet of Things (IoT) can be considered as a Service
Oriented Architecture (SOA) of microservices (µSs) [1], [2].
IoT devices run software services that communicate with each
other in an ad-hoc way to implement IoT applications. An
example is a home cinema controller µS that collects user
input and controls the shutters, the lights, the air conditioning,
the projector, and the screen.

IoT devices are typically distributed. A significant increase
in the computing power of IoT devices is likely to happen [3].
This increase will enable diverse smart devices such as light
switches to host multiple µSs. IoT systems become distributed
computing systems [4].

The IoT inherently processes privacy-related data. Its sen-
sors are sensing user presence, and its algorithms are learning
user habits. It also processes safety-relevant data, e.g. control
commands for industrial robots in an industry 4.0 production
scenario. Finally the remote control of entities such as smart
door locks imposes security risks. Consequently, security is a
key challenge for real world IoT systems [5].

Today, IoT systems are typically secured by configuring
access policies and enforcing them. Most current research
follows this approach with Policy Decision Points (PDP) and
Policy Enforcement Points (PEP) in different locations of an
IoT topology [6]. In our other paper at NOMS 2018 [7] we
provide a solution for securely distributing access policies in
an IoT system of distributed unattended nodes.

A problem with policy based approaches is that they typ-
ically rely on trusting developers to implement the policies
correctly. To mitigate from security holes in policy based
approaches, and to enable strong security while assuming

This research has been supported by the German Federal Ministry of
Education and Research (BMBF) in the project DecADe (16KIS0538).

untrusted developers, we follow a complementary, self learning
in-network approach by

• monitoring the communication of IoT µSs,
• automatically creating a communication model for each

µS, and
• classifying inter-service communication traffic as normal

or anomalous based on the model.

II. APPROACH

To implement the previously described steps we introduce
traffic monitors. In our demonstrator a monitor runs on each
IoT node. However, it could also run on dedicated nodes
or active routers and switches in the network. Both is fully
independent from the developers of the µS and thereby enables
introducing security by-design to existing systems [8].

The monitor intercepts each inter-service communication
and does Deep Packet Inspection (DPI). See the shield with
the eye on the IoT nodes in Fig. 1. The DPI identifies
the communication partners of each data transmission, and
additional metadata such as the executed command, the service
types, etc. The communication partners are stored as vertices,
the communication relationships as edges of our graph-based
communication model.

Our anomaly detection runs locally on each monitor. Each
node maintains its own communication graph. This distributed
approach scales with the size of an IoT system and provides
low latency. Both is important for resource limited IoT devices
with sometimes time-critical operations.

To bootstrap the communication model of new services,
we introduce a learning phase similar to the approach of [9]
in the Supervisory Control And Data Acquisition (SCADA)
domain. In this phase, that happens on the first start of a
service, we assume services to behave good and whitelist all
communication traffic.

A typical IoT site lacks a professional administrator. In
addition, the IoT is highly dynamic with frequent topology
changes resulting in high management complexity. To reduce
this complexity our security management is mostly autonomic.

To meet the dynamics of IoT systems we introduce an
interactive graph updating mechanism. Frequent topology
changes, e.g. by adding or removing IoT devices such as a
smart washing machine, can especially be expected in the
smart home domain where the vendors of technology will try
their best to convince consumers to buy new IoT equipment
frequently [10].978-1-5386-3416-5/18/$31.00 © 2018 IEEE

For the interactive updating of a µS’s communication
graph we present site managers with a list containing those
communication relationships that were detected but are not
part of the model yet. Such a site manager could be a
regular inhabitant of an IoT smart space. The presented
information is on a high semantic abstraction level to enable
non-professional to take meaningful decisions. Approving or
denying the prompted communication relationships updates
our communication model.

We are intercepting the inter-service communication for
our analysis. In this step we also implement a firewall that
drops not permitted communication packets. As described
before, our self-learning anomaly detection runs independent
from security implementations in the µSs. It can therefore
be combined with multi-vendor IoT systems and complex
topologies. The only requirement is knowledge of the used
communication protocols for doing the DPI. Together with
the active traffic filtering, our solution becomes a self-learning
IoT firewall. Its default deny strategy adds security by-design
to existing IoT systems.

III. DEMONSTRATOR DESCRIPTION

Raspberry Pi 3 Model B V1.2

Power

HDMI
Audio

U
SB

 2
x

U
SB

 2
x

ET
H

ER
N

ET

D
SI

 (D
IS

PL
AY

)

CSI (CA
M

ERA
)

GPIO

© Raspberry Pi 2015

µS

Raspberry Pi 3 Model B V1.2

Power

HDMI
Audio

U
SB 2x

U
SB 2x

ETH
ERN

ET

D
SI (D

ISPLAY
)

CS
I (

CA
M

ER
A

)

GPIO

© Raspberry Pi 2015

µS

Raspberry Pi 3 Model B V1.2

Power

HDMI
Audio

U
SB 2x

U
SB 2x

ETH
ERN

ET

D
SI (D

ISPLAY
)

CS
I (

CA
M

ER
A

)

GPIO

© Raspberry Pi 2015

µS

Allow access?

µS

µS

µS

µS µS

µS

myIoT

µS

µS

µS

µS

Service Communication Monitor
and Firewall
Microservice
Inter-Node Comm. Interface

Service Runtime Environment

Smart Doorlock

Communication Monitor

Smart Washing Machine
Smart Battery

User Device

Raspberry Pi 3 Model B V1.2

Power

HDMI
Audio

U
SB 2x

U
SB 2x

ETH
ERN

ET

D
SI (D

ISPLAY
)

CS
I (

CA
M

ER
A

)

GPIO

© Raspberry Pi 2015

Fig. 1. Demonstrator setup with service monitoring on the bottom left and
user interaction in the bottom center.

Fig. 1 shows the demonstrator setup. The IoT site initially
consists of three computing nodes. On the left is an embedded
controller of a smart door lock, in the middle one of a smart
battery, and on the right is one in a smart washing machine.

The IoT controllers are emulated by Raspberry Pis. For
service management the Distributed Smart Space Orchestra-
tion System (DS2OS) is used [2]. It manages the service
placement, the starting, stopping and migrating of µSs, etc. For
enabling the SOA of µSs DS2OS’s middleware, the Virtual
State Layer (VSL) is used. It provides a service-oriented
coupling including the semantic discovery of µSs [2].

At the bottom left a laptop is shown. It runs the dashboard
including a visualization of the graph that shows the currently
observed inter-service communication. Edges that are already
part of a service’s communication model are colored in green.
New edges that are not classified yet are shown in orange.
Edges that were denied by the site manager are shown in red.

The graph on the monitor shows the live view on the
ongoing µS communication as observed by the distributed

monitors. The host-based monitors only know their local
context. Besides visualizing the set of automatically created
communication models, this component is also capable of
analyzing µS communication on a site-level.

In the bottom center, the site manager interface is shown
on a smartphone. In our demo each visitor can use her own
phone. For communication relationships (edges) that are not
yet classified, the interface presents a list of µS communication
endpoints [2]. More concrete the user sees the service names,
their semantic, human understandable description, additional
metadata, and the violated property of the model such as a
non-classified set data operation.

In the demo several services are started on the nodes. The
control µS on the washing machine interacts with µSs that
provide the current state of the local photovoltaic powered
battery. Once it is full enough for washing, the machine starts
and washes saving environmental resources [11].

In a first scenario, by connecting another smart battery
via another Raspberry Pi, the washing machine control µS
automatically tries to interact with the new battery’s µS. The
user is informed and can validate the connection enabling the
washing machine to use the new device. This shows how our
solution handles adding an IoT device to a smart space.

In a second scenario the washing machine control µS gets
updated. The update introduces malicious behavior that makes
the controller access the smart door lock on the left. When our
solution is disabled the door suddenly opens.

When repeating the update with our µS firewall enabled the
access is blocked. The site manager gets the corresponding
notification and can deny the access. This demonstrates how
our solution can effectively prevent malicious behavior that is
introduced by untrusted third party developers.

The overhead of the described distributed firewall uses re-
sources on each monitor node, and it adds latency to the inter-
service communication. The current graph implementation
uses about 34 KB for storing the communication relationships
of 20 IoT services. The added latency is 6ms per message.

We are currently working on using features for the µS
communication model that are independent of the IoT site,
and on reducing the latency of our approach.

IV. POTENTIAL IMPACT ON THE AUDIENCE

Securing the IoT is essential – especially for preserving user
privacy and safety (Sec. I). Security should be part of any IoT
implementation from the initial design [8]. Luckily there is
research going on for providing IoT systems with such security
from the beginning [1], [6], [7].

However, real world deployments show a strong need for
adding security to existing systems. Malware such as the
Mirai Botnet show the malicious potential of unprotected IoT
services with free computing resources [12]. In the future even
more services that cause even bigger harm will run within
IoT spaces [10]. With our demonstrator we showcase adding
inevitable and user-friendly security to existing IoT systems
without a need to make changes in the existing services. Our
demonstrator is a major step forward towards a secure IoT.

REFERENCES

[1] D. Lu, D. Huang, A. Walenstein, and D. Medhi, “A Secure Microservice
Framework for IoT,” in 2017 IEEE Symposium on Service-Oriented
System Engineering (SOSE. IEEE, 2017, pp. 9–18.

[2] M.-O. Pahl, G. Carle, and G. Klinker, “Distributed Smart Space Or-
chestration,” in Network Operations and Management Symposium 2016
(NOMS 2016) - Dissertation Digest, 2016.

[3] R. Want, “When Cell Phones Become Computers,” Pervasive Comput-
ing, IEEE, vol. 8, no. 2, pp. 2–5, 2009.

[4] M.-O. Pahl and G. Carle, “Crowdsourced Context-Modeling as Key
to Future Smart Spaces,” in Network Operations and Management
Symposium 2014 (NOMS 2014), May 2014, pp. 1–8.

[5] S. Misra, M. Maheswaran, and S. Hashmi, “Security Challenges and
Approaches in Internet of Things,” Security Challenges and Approaches
in Internet of Things, 2017.

[6] A. Ouaddah, H. Mousannif, A. A. El Kalam, and A. A. Ouahman,
“Access control in the Internet of Things - Big challenges and new
opportunities.” Computer Networks, 2017.

[7] M.-O. Pahl and L. Donini, “IoT Microservice Security by-Design,” in
NOMS 2018, Apr. 2018.

[8] A. Cavoukian, “Privacy by Design: Leadership, Methods, and Results.”
European Data Protection, pp. 175–202, 2013.

[9] R. R. R. Barbosa, R. Sadre, and A. Pras, “Exploiting traffic periodicity
in industrial control networks.” IJCIP, 2016.

[10] M.-O. Pahl and G. Carle, “Taking Smart Space Users into the Develop-
ment Loop: An Architecture for Community Based Software Develop-
ment for Smart Spaces,” in Proceedings of the 2013 ACM Conference
on Pervasive and Ubiquitous Computing Adjunct Publication. New
York, NY, USA: ACM, 2013, pp. 793–800.

[11] M.-O. Pahl, H. Niedermayer, H. Kinkelin, and G. Carle, “Enabling Sus-
tainable Smart Neighborhoods,” in 3rd IFIP Conference on Sustainable
Internet and ICT for Sustainability 2013 (SustainIT 2013), Palermo,
Italy, 2013.

[12] C. Kolias, G. Kambourakis, A. Stavrou, and J. M. Voas, “DDoS in the
IoT - Mirai and Other Botnets.” IEEE Computer, 2017.

