
Securing IoT Microservices with Certificates
Marc-Oliver Pahl

Technical University of Munich
pahl@net.in.tum.de

Lorenzo Donini
Technical University of Munich

lorenzo.donini@tum.de

Abstract—The Internet of Things (IoT) consists of distributed
computing nodes. With increasing processor power such nodes
can be used as hosts for microservices. IoT services routinely
processes security critical data that affects the privacy, safety, and
security of users. However, suitable security mechanisms remain
missing. Fundamental open challenges are the authentication of
services, securing the metadata of services, and validating the
correct functioning of security mechanisms on distributed entities
under different authorities. In this paper we present a certificate-
based methodology for authenticating services, securely adding
information to their executables, and validating the correct
functioning of distributed entities of our design. We add X.509
certificates with extended attributes to the service executables. By
introducing different trust anchors, services and their metadata
are protected through their entire life cycle from developers to the
computing nodes running them. Our solution enables distributed
nodes to verify the security properties locally. It enables reliably
changing certificate properties across the distributed IoT nodes.
It features autonomous certificate management. We evaluate
the traffic caused by our autonomous certificate management
process quantitatively. The presented solution is churn tolerant
and applicable to diverse distributed systems.

Index Terms—IoT, security, certificates, x.509, microservices,
autonomous certificate management, unattended nodes

I. INTRODUCTION

The Internet of Things (IoT) consists of distributed comput-
ing nodes. A goal of the IoT is providing personalized services.
To reach this goal, IoT services inherently process private data
including sensor data and actuator data. Providing adequate
security is therefore critical for IoT components. However,
implementing security is still not a standard feature when
developing IoT components. The Mirai botnet exemplified this
in 2016 [1].

Three fundamental challenges for implementing IoT service
security are authentication, accountability, and integrity [2]–
[4]. The term authentication describes the verification of the
identity of a service. In our context this especially includes
authenticating that a service comes from a certain developer,
store, or belongs to an IoT site. The term accountability
describes in our context that actions can be tracked down to
specific responsible entities. The term integrity describes the
assertion that data is accurate and consistent.

In this paper we provide a certificate-based solution for
achieving authentication, accountability, and integrity for IoT
(µ-) services running on distributed computing nodes [5], [6].

This research has been supported by the German Federal Ministry of
Education and Research (BMBF) in the project DecADe (16KIS0538).

As topology we assume a setting similar to software distri-
bution systems for PCs or smartphones. Developers upload ex-
ecutables to a store that distributes them to the systems where
they get installed. Different from classic software distribution
systems, we assume that an IoT site consists of distributed
nodes that can run services. This makes providing security
on-site significantly more complex than securing a single
trusted machine. To enable site-internal service management
we assume the presence of a hierarchical service management
infrastructure.

The following Sec. II introduces the setting more in detail.
This section also details the research questions. Sec. III intro-
duces the proposed security architecture. Sec. IV evaluates
the traffic generated-by the proposed automated certificate
renewals depending on changing amounts of services. This
section also proposes a tool to enable real world use of the
proposed solution even in scenarios with lots of running µ-
services. Sec. V puts our work into the context of the state of
the art.

II. SETTING

The IoT consists of distributed computing nodes. An in-
crease of the computing power computing power [7] enables
running services on regular IoT nodes. We assume the pres-
ence of a service management infrastructure within an IoT
smart space.

On the right of Fig. 1 a generic hierarchical service man-
agement architecture is shown. It consists of a Site-Local
Service Manager (SLSM) that does the overall management of
installed services. On each computing node a Node-Local Ser-
vice Manager (NLSM) manages the locally running services.
The SLSM manages the NLSMs that do the local management
autonomously. The SLSM also communicates with the Store
(center) that is used for service distribution.

For our solution we consider microservices (µS) to run
on the distributed unattended IoT nodes. The µS setting
implies that individual computing nodes do not require strong
resources to run services. At the same time it implies that
many µS are deployed within an IoT site, making it necessary
to handle the emerging security management complexity.

The top of Fig. 1 shows the life cycle of a service. The
goal of our security mechanism is to protect a service from
the development over the distribution to an IoT space where
it is configured, deployed, and updated. For our setting we
assume many independent developers, one or multiple Stores,978-1-5386-3416-5/18/$31.00 © 2018 IEEE

SLSM N
LS
M

N
LS
M

µS µS

µS

µS
µS

development distribution configuration deployment update

update

Store

IoT Space 1

IoT Space 3 IoT Space 2

Dev 1

Dev 3

Dev 2

Fig. 1. Assumed IoT Service Ecosystem.

and multiple IoT sites. See Fig. 1 with three developers on the
left and three IoT smart spaces on the right.

In contrast to many existing works [2] we assume that the
developer sites, the App store, and the IoT spaces are under
different administration. We assume that the IoT computing
nodes and the developers behave well and are not malicious.
We assume that the developers and the local sites have trust
relationships to the store. Still we want to provide means to
control its correct operation when distributing services.

A developer uploads a service to the store. The store offers
it for distribution. Different IoT smart space sites exist. IoT
site-locally a service is installed within a group of IoT devices
under the management of the SLSM and the NLSMs.

The architecture in Fig. 1 is similar to other application dis-
tribution systems such as the smartphone App economy in Mo-
bile Computing [8]. A major difference between smartphones
or PCs and IoT systems is the distribution of components.
The IoT is a distributed system. IoT components cannot be
considered as trusted as parts inside a smartphone or a PC.

Our goal is protecting a service and its meta data over
their entire life cycle. This includes the executable and related
information such as configuration or security parameters.

Our work targets the following challenges for providing
authentication, accountability, and integrity:

• Enabling distributed IoT nodes to identify if a service
belongs to the IoT smart space site (authentication).

• Enabling distributed SLSMs to verify the correct opera-
tion of the Store (accountability).

• Enabling distributed NLSMs to verify the correct opera-
tion of the SLSM (and the Store) (accountability).

• Enabling distributed IoT nodes to check the integrity
of the service executable and its metadata attributes
(integrity).

• Creating a fully distributed solution to provide the scal-
ability and flexibility that the IoT requires.

• Creating a self-managing solution that does not require
user or developer interaction.

• Enabling a guaranteed update of the secured information
that is distributed over the loosely coupled IoT nodes
within an IoT smart space site.

The scalability and autonomy properties of the solution are
especially relevant when it comes to IoT settings with µS

where many services are running [5], [6].

III. SERVICE SECURITY ARCHITECTURE

We introduce certificates to protect a) the executable of a
service and b) additional metadata. The certificates are signed
by different entities over the lifetime of a service. Site-locally
certificates with a short lifetime are issued to implement a
distributed guaranteed update scheme. As certificate lifetimes
are used, this revocation scheme does not need Certificate
Revocation Lists and can therefore be executed fully locally.
Fig. 2 shows our security methodology applied to the setting
from Fig. 1.

A. Service Certificates

For protecting the executable, and for enabling the secure
adding of properties to it we introduce X.509 version 3 [9]
certificates to the setting. We introduce the extended attribute
executableHash for storing a cryptographic hash over the
executable. Further properties can be stored either directly in
the certificate or in a metadata file that is protected by a hash
that is also added to the certificate.

The integrity of all data in the extended attributes is secured
by the certificate. By adding the executable hash, the certificate
gets pinned to the executable. Via the use of a cryptographic
hash the integrity of the executable is protected. Hashes over
other files can also be added as extended attributes, e.g. for
securing content of a metadata file. Without restricting the
generality we assume in the following that only the executable
hash is part of the certificate and no other files are required
to run the service executable.

B. Certificate Signing and Verification

For signing the introduced service certificate, we introduce
different keypairs throughout the lifecycle of a service. De-
velopers register at the Store and upload their public keys.
When delivering a service to the store, a developer creates
the executable, hashes it, adds the hash to a locally generated
certificate, and signs the certificate with her private key. The
developer certificate Certdev and the executable are uploaded
to the Store.

The store checks the integrity of Certdev with the public
developer key. It also checks the integrity of the executable.

SLSM N
LS
M

N
LS
M

µS µS

µS

cert cert

SLCA

µS
certcert

certcert

µS
certcert

cert

certcert
cert

Store

development distribution configuration deployment update

SLCA

SLCA

update

CA

Fig. 2. Distributed Certificate-Based IoT Service Security.

Then it copies the data from the developer certificate and signs
this Store certificate Certstore with its private key.

When a service is installed to an IoT site, the SLSM
obtains the package 〈executable,Certdev,Certstore〉. As in other
software distribution scenarios, the SLSM trusts the Store and
has its public key stored locally. It uses it to verify the Certstore
and the executable.

Analog to the Store, the SLSM copies the values of the
Certstore into a new certificate CertSLSM. For various purposes
the SLSM may add or change data in the certificate. An ex-
ample is adding or changing access policies and storing them
in the certificate. After having made all necessary changes,
the SLSM signs its certificate with the site’s public key. For
that purpose a Site-Local Certificate Authority (SLCA) is
introduced: CertSLSM.

When starting a service, the service package is transferred
to an NLSM. The NLSMs have the store key and the IoT-site-
local SLSM key pre-configured. They verify the integrity of all
data and execute the service. By using site-local certificates,
an NLSM can fully locally determine if a service belongs to
the site.

C. Verifying the Store and the SLSM

To verify if the Store did not manipulate the content of the
Certdev, the SLSM can compare the content of the Certdev with
Certstore. To verify the integrity of Certdev it requires the public
key of the developer.

The NLSMs can verify if the SLSM did not tamper
the Certstore data by verifying that certificate with the pre-
configured key of the store, and comparing the result to
CertSLSM.

Carrying the three certificates to the NLSM enables a
verification of the full certificate set locally. Like the SLSM,
the NLSM requires the developer public key to verify if the
store tampered the data originally provided by the developer.
The crosscheck is especially relevant for ensuring that the
executable was not modified and the hash matches in all three
certificates.

D. Modification and Revocation via short Certificate Lifetimes

The site-local certificates enable a fully distributed verifi-
cation of certificates when knowing the site’s public key. As

the nodes are unattended and we do not want to bother the
user, the NLSMs automatically renew service certificates via
the SLSM and the SLCA before they expire.

If the user modifies service metadata, such as access policies
that are protected by the CertSLSM the SLSM asks the NLSM
to immediately renew the service certificate. If the NLSM
is currently unreachable due to churn, the security critical
properties will remain valid latest until the expiry time of the
service certificate. A disconnected NLSM will automatically
renew all expired certificates once it reconnects to the SLSM.

To enable a fully distributed certificate revocation it is
desired to have short certificate lifetimes. For lowering the
network traffic, CPU load, and to enable a longer operation of
services on disconnected nodes, a longer certificate lifetime is
desirable.

Under the assumption that the time is synchronized between
all distributed IoT nodes, this solution implements a fully
distributed certificate modification and revocation scheme that
is enforced after a maximum time of Certlifetime.

As we use standard X.509 certificates, those can directly
be used for establishing transport security via TLS, DTLS, or
WTLS [3]. Via our extended attributes, diverse access control
schemes such as RBAC, PBAC, or ABAC can be implemented
on top of our solution.

IV. EVALUATION

To assess the practical applicability of the automated certifi-
cate renewals we assess the caused traffic in a simulation. The
IoT is highly heterogeneous in devices and resources. There-
fore we measure the impact of our solution on theoretically
unlimited, simulated resources to enable the reader to match
the results with concrete IoT device characteristics.

Our simulated IoT site consists of 15 computing nodes
running 30 µ-services each. As simulation run time we chose
about 24h to capture the starting and stable cases of the system.
We implement a node churn rate of 0,001%. After a drop out, a
node stays randomly between 1s and 2500s offline. The outliers
Fig. 3 are caused by reconnecting IoT nodes that refresh all
local service certificates at once.

Our site-certificate key length is 2048 bit. The additional
payload of a certificate for additional SLSM information,
e.g. for access control, varies between 0 and 200 Bytes per

 0

 5000

 10000

 15000

 20000

 25000

 30000

 35000

 0 100 200 300 400 500 600

T
ra
ff
c

(B
/s
)

Amount of Services

 0

 5000

 10000

 15000

 20000

 25000

 30000

 35000

 0 100 200 300 400 500 600

T
ra
ff
c

(B
/s
)

Amount of Services

Fig. 3. Peak traffic generated by certificate renewal depending on the total
amount of services without (top) and with a random backoff (bottom).

service. The certificate lifetime is set to 5000s since this value
experimentally showed a good trade off between desired short
life times and low traffic.

In our simulation we assume that all services are roughly
started at the same time. This is a realistic assumption since
IoT spaces are constantly running, and a power outage may
cause all local IoT nodes to restart at the same time. Having
the same start time and certificate lifetime, all renewals happen
periodically at the same time resulting in traffic peaks. Fig. 3
visualizes this at the top. The boxplots show the peak traffics
per second, omitting seconds where no communication is
caused by our solution. This is relevant to understand the
network dimensioning our solution requires to work.

To mitigate from unwanted renewal periodicity, we intro-
duce a certificate renewal backoff. With the backoff mech-
anism enabled, services do not renew a certificate at the
very moment when it expires, but use a random backoff.
For the 5000s renewal interval we set the random backoff to
1250 seconds (25%). A renewal happens randomly between
1250 and 1s before a certificate expires. The effect of the
random backoff becomes well visible when comparing the
traffic produced by different amounts of services in Fig. 3.

The two box plots in Fig.3 aggregate the traffic per second
over 20 simulation runs of 100000s each within one boxplot
for each amount of nodes. When the certificates get renewed
at fixed times, during these times lots of traffic is generated,

while no traffic at all is generated throughout the rest of the
simulation, except for the traffic caused by node churn. With
the amount of services the generated traffic increases linearly.
This is visible by looking at the quartile boundaries displayed
in the boxes.

As opposed to this, in the simulations with random backoff
in the certificate renewal times the generated traffic only has
occasional peaks. The quartile boundaries remain below the
2,5 KB/s line even with 600 active services. The traffic still
linearly increases, mainly due to outliers, but as it is well
distributed over time. The coefficient is very low leading to
significantly lower average traffic.

Fig. 3 shows that our proposed solution with the random
backoff requires low bandwidth even for larger amounts of
services.

V. RELATED WORK

Most of the existing work focuses either on transport
security or on authorization schemes such as OAuth [2]. Those
works are complementary to ours and should be combined to
achieve more security properties for IoT systems.

The authors of [3] look at standardization efforts for the
IoT. The focus with such activities is on transport security.
The authors come to the conclusion that providing our security
properties for services is a highly relevant and complex task
that must be addressed.

In mobile computing, Apple and Google secure their Apps
with certificates similar to our approach [10]. As discussed in
Sec. II the approaches are relevant and applicable to the IoT
but not sufficient as they do not consider distributed execution
environments.

Rivest discusses already in 1998 [11] that short certificate
lifetimes could be an option for getting rid of Certificate
Revocation Lists. However he sees the effort of reissuing
the certificates. We solve this problem by introducing our
automated certificate renewal process.

VI. CONCLUSION

Our solution provides IoT services with authentication,
accountability and integrity from the developer to the runtime
environment. It enables all participating entities to verify the
correct operation of the preceding entities in the processing
chain. The site-local autonomous certificate management en-
ables the changing of secured attributes on all participating
IoT nodes within guaranteed time limits. By enabling node-
local verification of the secured data our solution scales well.
This is especially relevant in the IoT where the connections
between nodes are highly heterogeneous. Our solution is churn
tolerant, which is also relevant for the IoT.

IoT architectures where third party developers provide ser-
vices will be reality soon. Security has to be included in any
IoT design from the beginning. We hope to raise awareness
on this topic, and to contribute to a more secure future IoT.

REFERENCES

[1] C. Kolias, G. Kambourakis, A. Stavrou, and J. M. Voas, “DDoS in the
IoT - Mirai and Other Botnets.” IEEE Computer, 2017.

[2] A. Ouaddah, H. Mousannif, A. A. El Kalam, and A. A. Ouahman,
“Access control in the Internet of Things - Big challenges and new
opportunities.” Computer Networks, 2017.

[3] S. L. Keoh, S. S. Kumar, and H. Tschofenig, “Securing the internet of
things: A standardization perspective,” IEEE Internet of Things Journal,
vol. 1, no. 3, pp. 265–275, 2014.

[4] C. R. P. dos Santos, J. Famaey, J. Schonwalder, L. Z. Granville, A. Pras,
and F. De Turck, “Taxonomy for the Network and Service Management
Research Field,” Journal of Network and Systems Management, Jan.
2016.

[5] M.-O. Pahl, G. Carle, and G. Klinker, “Distributed Smart Space Or-
chestration,” in Network Operations and Management Symposium 2016
(NOMS 2016) - Dissertation Digest, 2016.

[6] B. Butzin, F. Golatowski, and D. Timmermann, “Microservices approach
for the internet of things,” in 2016 IEEE 21st International Conference
on Emerging Technologies and Factory Automation (ETFA). IEEE,
2016, pp. 1–6.

[7] R. Want, “When Cell Phones Become Computers,” Pervasive Comput-
ing, IEEE, vol. 8, no. 2, pp. 2–5, 2009.

[8] Apple Incorporated, “App Distribution Guide,” Apple Inc., Oct. 2013.
[9] D. Cooper, S. Santesson, S. Farrell, S. Boeyen, R. Housley, and

W. Polk, “Internet X.509 Public Key Infrastructure Certificate and
Certificate Revocation List (CRL) Profile,” RFC 5280 (Proposed
Standard), Internet Engineering Task Force, May 2008, updated by
RFC 6818. [Online]. Available: http://www.ietf.org/rfc/rfc5280.txt

[10] Apple Incorporated, “IOS Security Guide,” Tech. Rep., May 2016.
[11] R. L. Rivest, “Can We Eliminate Certificate Revocations Lists?” Finan-

cial Cryptography, 1998.

http://www.ietf.org/rfc/rfc5280.txt

