
Graph-based Anomaly Detection for IoT Microservices

François-Xavier Aubet, Marc-Oliver Pahl, Stefan Liebald, Mohammad Reza Norouzian
{pahl,liebald,aubet}@net.in.tum.de, norouzian@sec.in.tum.de

Technical University of Munich

ABSTRACT
The Internet of Things (IoT) consists of distributed devices.
The devices are managed by microservices that cooperate in
an ad-hoc way for implementing diverse use cases. The op-
portunistic cooperation, and the heterogeneous distributed
computing environments make it difficult to manually keep
track of the communication relationships between IoT ser-
vices. We show how a communication graph can be built
autonomously, and how it can be used to identify traffic
anomalies. A special focus is on bootstrapping the allowed
connections of a service. We provide a quantitative evalua-
tion of the added latency of our security feature, and of the
graph changes in a real world scenario.

1. INTRODUCTION
The Internet of Things (IoT) consists of distributed com-

puting nodes that serve diverse purposes. For implement-
ing a typical IoT scenario, diverse nodes cooperate. More
concrete, microservices running on the nodes work together
in a service oriented way [5, 2]. An example is a heating
controller service that reads temperatures from distributed
meters, and sets the valves of the installed heating devices.

The IoT inherently processes user data, affecting user pri-
vacy, safety, and security. Consequently providing security
and access control are key requirements for the IoT [3, 6].

Securing the IoT means securing IoT services, or more in
particular the data the services exchange [5]. Consequently
our focus in this paper is on securing inter-service commu-
nication within an IoT space. In this paper we focus on the
two sub challenges, 1) automatically creating a model for
the communication relationships between IoT microservices,
and 2) detecting traffic anomalies using the model (Sec. 2).

Most state of the art secures IoT data exchange via poli-
cies. Examples are OAuth tokens and group based access
control [3, 7, 6]. Our traffic monitoring provides comple-
mentary security. It does not require trusting in services
correctly implementing the security policies. It is semi-
automatic, and requires only limited user interaction (Sec. 3).

PAM 2018 Berlin, Germany

ACM ISBN 978-1-4503-2138-9.

DOI: 10.1145/1235

2. APPROACH
We model the microservice communication of each com-

puting node as a graph. Services become vertices, commu-
nication relationships edges. The graph is initialized and
updated autonomously by node-locally observing communi-
cation between services. On each IoT node we implement a
traffic monitor that intercepts the service communication.

Our initial assumption is that services behave well when
first being started [1]. We implement a learning phase that
updates the local graph with a vertex for each new service,
vertices for its communication partners, and edges for all
communication relationships. During the learning phase we
label these edges as normal communication. After the learn-
ing phase we classify unknown traffic (edges) as anomalous.

IoT topologies are dynamic and therefore the graph has to
be updated over time. Site owners get informed of anoma-
lous traffic, e.g. via a message on their smartphones. They
can legitimate the unexpected traffic, resulting in a rela-
beling of the corresponding communication model edge to
normal. First tests show that a sufficiently long learning
phase results in a low user interaction rate (Sec. 3).

To improve the security we want to remove the initial trust
implication and get rid of the learning phase. Our system
therefore persists the learned well behavior for each service
in its metadata. These metadata are exchanged between all
local IoT computing nodes. When a service was once run-
ning inside an IoT space, its communication model can be
reused when it is restarted on another node. This reduces
the load on a node as the learning is not required anymore.
The service communication model is valid for all IoT com-
puting nodes within an IoT space. It prevents that updated
service binaries suddenly behave malicious.

In our pilot we base our IoT system on the Virtual State
Layer (VSL) middleware that implements a tuple space for
data-oriented service coupling [5]. Consequently our vertices
are VSL service addresses and the communication happens
through the VSL entry points, the Knowledge Agents (KAs).
We couple our monitor with the KA.

Our communication models use local context such as ser-
vice addresses. Ideally the communication models would be
portable, meaning that they can be used for any service in-
stance on any IoT node. The VSL uses a semantic service
discovery [4, 5]. Using semantic properties instead of con-
crete service addresses increases the portability significantly.
However, for implementing the described functionality of au-
tomatically creating site-independent communication mod-
els we started analyzing more communication parameters
including periodicity with machine learning.



3. EVALUATION
Our solution runs on each IoT computing node that hosts

services. It is thereby fully distributed. Running on each
node hosting services, it scales with the size of an IoT site.
Running the detection node-locally matches the heteroge-
neous resources of the IoT. It reduces latency and network
overhead.

The limited resources of IoT nodes require a low memory
usage. We use stacked hash tables in our analyzer. A vertex
requires 100 + number edges ∗ 88 ∗ 1.33 Bytes. The graph
data-structure uses 1.33∗size vertex∗number vertex Bytes.
This results in 33,7 KB for a graph that represents twenty
microservices with ten communication relationships each.

10 20 30 40
0

20

40

60

80

100

120

140

160

R
T

T
 o

f a
 c

om
m

un
ic

at
io

n 
(m

s)

Number of microservices

Measurements with detection
Measurements without detection

Figure 1: Latency added by our current implemen-
tation in inter service communication RTTs.

Fig. 1 shows the latency of the inter-service communi-
cation without (left) and with with our solution enabled
(right). As can be seen, our Java analyzer delays each VSL
communication by about 6ms that are added to the 24ms
Round Trip Time (RTT) without anomaly detection. We
are currently working on reducing this delay.

0 2 4 6 8 10 12 14

Time (m)

0

5

10

15

N
um

be
r 

of
 e

dg
es

 a
nd

 v
er

tic
es

Number of vertex
Number of edges
Learning phases
Anomalous behavior needing user

Figure 2: Communication Graph Changes over
Time indicating the needed adaptations, and the ef-
fectiveness of the learning phase.

Fig. 2 shows the development of a node’s connection graph
directly after startup where several services are started. Dur-
ing this phase each new service triggers its new learning
phase (left side). The green bar starting at minute seven
depicts the process of later adding a new service. It triggers
a new learning phase for that service.

The red bar after minute ten shows a previously unknown

connection. It is classified as anomalous. The user is in-
formed and can give feedback that results in adding the new
vertices and edges to the communication model in the ser-
vice metadata. Such user intervention is seldom since in an
IoT space, after a longer running period, the communication
relationships typically only change when new entities such
as new sensors, are added. To lower the need for user inter-
vention we are currently introducing additional classification
features such as periodicity.

4. RELATED WORK
Flow-based Intrusion Detection Systems inspect packets

faster as they do not have to do Deep Packet Inspection
(DPI). However, especially regarding portability of our com-
munication relation metadata we require such DPI.

For industrial Supervisory Control And Data Acquisition
(SCADA) systems a similar approach to ours exists [1]. The
authors whitelist flows, have a learning phase but lack con-
tinuous interactive model adaptation. The IoT requires adap-
tation as devices are integrated or removed frequently.

We could not identify existing related work that creates
portable communication models per service and distributes
them among computing nodes.

5. CONCLUSION
We present a graph-based anomaly detection system for

distributed IoT microservices. Our approach is self-managing.
It adapts to the changes of an IoT site over time by interac-
tively adapting the communication model. Our evaluation
already shows that the approach is promising regarding the
required low user interaction.

As next steps we want to derive other communication fea-
tures such as communication periodicity and more complex
interaction patterns. Thereby we expect to come up with a
better communication model that is more portable as it is
independent from local context. We especially target ana-
lyzing the IoT service communication over a longer time.

6. REFERENCES
[1] R. R. R. Barbosa, R. Sadre, and A. Pras. Flow

whitelisting in scada networks. Int. j. of critical
infrastructure protection, 6(3):150–158, 2013.

[2] B. Butzin, F. Golatowski, and D. Timmermann.
Microservices approach for the internet of things. In
IEEE ETFA, pages 1–6. IEEE, 2016.

[3] A. Ouaddah, H. Mousannif, A. A. El Kalam, and A. A.
Ouahman. Access control in the Internet of Things -
Big challenges and new opportunities. Computer
Networks, 2017.

[4] M.-O. Pahl and G. Carle. Crowdsourced
Context-Modeling as Key to Future Smart Spaces. In
IEEE NOMS, pages 1–8, May 2014.

[5] M.-O. Pahl, G. Carle, and G. Klinker. Distributed
smart space orchestration. In IEEE NOMS, pages
979–984. IEEE, 2016.

[6] M.-O. Pahl and L. Donini. IoT Microservice Security
by-Design. In NOMS 2018, Apr. 2018.

[7] S. Sciancalepore, G. Piro, D. Caldarola, G. Boggia, and
G. Bianchi. OAuth-IoT: An access control framework
for the Internet of Things based on open standards. In
IEEE ISCC, pages 676–681. IEEE, 2017.


